The Effectiveness of the Augmented Reality (AR) Sandbox for Improving Spatial Thinking in Undergraduates

Wednesday 4:30pm-5:45pm Beren Auditorium
Poster Session Part of Wednesday Poster Session

Session Chairs

Elijah Johnson, Auburn University Main Campus
karen mcneal, Auburn University Main Campus
Spatial reasoning ability is a crucial skill necessary for success in any of the STEM (science, technology, engineering, and mathematics) domains. Research suggests that the base level of spatial thinking ability is how students self-organize into their majors and careers (Wai et al., 2013), where students may select out of STEM domains due to the level of spatial ability they possess. However, spatial reasoning is malleable and, with training, could increase student participation in the STEM domains. One way to address the concern of student participation in STEM is through implementing interventions in introductory STEM courses that build spatial thinking skills. One approach to support the development of student spatial skills may be through using innovative technology that both teaches course content effectively and fosters improvement in spatial thinking. The augmented reality (AR) sandbox is an interactive way to teach geological concepts and perhaps spatial thinking skills simultaneously. Despite, several recent publications that have utilized the sandbox in the undergraduate classroom (Woods et al., 2017; Giorgis et al., 2017), there has not been sufficient research on the usefulness of the AR sandbox on improving spatial reasoning ability. This study aims to assess whether the AR sandbox can be used to develop student spatial ability through a laboratory-based research project. This study will distribute the Spatial Reasoning Instrument (SRI) (Ramful et al., 2017) to a broad base of undergraduate students enrolled at a large research institution in the southeastern US. The results of this survey will be presented where we will examine spatial ability with student intended major and their demographic characteristics. We will also utilize the responses to select subjects with low spatial ability in our planned laboratory experiments with the AR table where we will design training experiences targeting specific spatial skill development and assess participant's spatial abilities pre-post.