Using Galvanic Skin Sensors to Measure Engagement and Learning Outcomes During Teacher Workshops and Undergraduate Classes about Climate Science

Wednesday 4:30pm-5:45pm Beren Auditorium
Poster Session Part of Wednesday Poster Session


Ariel Morrison, University of Colorado at Boulder
Jennifer Kay, University of Colorado at Boulder
Anne Gold, University of Colorado at Boulder
karen mcneal, Auburn University Main Campus
Nicholas Soltis, Auburn University Main Campus
Climate science is a complex topic that requires system-level thinking and the application of general science concepts. Identifying techniques to improve climate literacy and learning gains is an emerging research area with important broader impacts. Active learning techniques improve engagement throughout the learning process. Lasting learning gains occur when both the cognitive and affective domain are engaged. But how do we assess engagement during science classes? Galvanic skin sensors are a relatively new technique to directly measure engagement and cognitive load in science education. First, we studied the engagement and learning gains of 16 teachers throughout a one-day professional development workshop focused on climate communication. The workshop consisted of presentations about climate science, climate communication, storytelling and filmmaking, which were delivered using different pedagogical approaches. Approaches included group exercises, clicker questions, videos and discussions. Using a pre-post test design we measured teachers' learning gains and attitude changes towards climate change. Each teacher also wore a sensor to measure skin conductance as a proxy for emotional engagement. We surveyed teachers to obtain self-reflection data on engagement and on their conductance data during and after the workshop. Qualitative data provide critical information to aid the interpretation of skin conductance readings. Based on conductance data, teachers were most engaged during videos and interactive work as compared to lecture-style presentations. Results indicate that watching videos or doing interactive activities may be the most effective strategies for increasing teachers' knowledge of climate science. Next, we will use the results from the workshop to inform a research study on engagement and learning outcomes in undergraduate science students. Do videos about climate science produce the same engagement peaks in students as in teachers? Preliminary results indicate that short videos may be an effective method of increasing classroom engagement and lasting learning gains in undergraduate climate science classes.