Teaching glacier dynamics through online visualizations
Friday
3:00pm-4:00pm
Beren Auditorium
Poster Session Part of
Friday Poster Session
Session Chairs
James Stauder, The University of Montana-Missoula
Leigh Stearns, University of Kansas Main Campus
Jesse Johnson, The University of Montana-Missoula
A major contribution to global sea level rise is the increased melting of land-based ice, such as glaciers and ice sheets. The objective of this project is to improve understanding of the physical processes controlling glacier dynamics, and to determine how individual glaciers will contribute to sea level rise based on predictions of future climate. Visualizations and model experiments offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. I have developed an interactive website which displays published data related to ice masses and provides an intuitive interface. The user is able to select a glacier from Greenland and perturb several variables that directly or indirectly affect the flow of the glacier. The website then uses a sophisticated numerical model to determine the geometry of the ice sheet through time, given perturbations to climate and its coupling to ice dynamics. Throughout the run, a user is able to see the output of the model in the form of two line-graphs. One graph displays the results of the user's perturbations while the other displays the same glacier without the perturbations. These resulting graphs are an intuitive and simple way for the user to see the changes to the ice sheet as time moves on, and also to see what kind of effects that their perturbations have on it.