A Longitudinal Study of Science Teaching Efficacy and Math Anxiety in Pre-Service Teachers

Monday 1:30pm Weeks Geo: AB20
Oral Presentation

Author

Katherine Ryker, University of South Carolina-Columbia
Negative attitudes of elementary teachers towards science and math have been well documented for several decades, a combination which impacts how science content is taught (Bleicher, 2001; Joseph, 2010), and ultimately has a limiting effect on student learning outcomes (Shrigley, 1974). These attitudes can be passed on to elementary students by their teachers, which encourages students to avoid science and math in the future (Beilock, 2010). Though studies of in-service teachers' perceptions of science and math have been done (e.g. Wenner, 2001), little work exists to show how these attitudes develop together in pre-service elementary teachers (PETs). This limits our ability to develop interventions that target both attitudes and content knowledge.

Eastern Michigan University's PETs take three science courses in sequence: Physics, Earth Science, and Biology, all designed specifically for PETs. We have collected data on more than 225 students' science teaching efficacy (STEBI; Enoch and Riggs, 1990) and math anxiety (AMARS; Alexander and Martray, 1989) at the beginning and end of each of these courses, including multiple sections of Physics and Biology, and an additional 200 Earth Science students' science teaching efficacy. While most teaching beliefs are established before students head to college, these courses represent one last opportunity to change PETs' attitudes towards science and math, as well as their ability to teach science and math content. This work builds on previous identification of specific items on the STEBI that changed over a semester-long Earth Science course, and students' explanations for those changes (Ryker, 2015). The following questions are explored in this study: Do PETs with high math anxiety also have negative perceptions towards science, given how interrelated the two are, or do students treat them as two different domains? How do these attitudes change with exposure to required science courses, or specific strategies used in them?