Guiding Teachers to Implement an NGSS Aligned Curriculum Focused on Natural Phenomena and Engineering Scenarios

Monday 3:00pm Weeks Geo: AB20
Oral Presentation

Authors

Kathy Browne, Rider University
Anne Catena, Princeton University
Cathlene Leary-Elderkin, Rider University
Wil van der Veen, Raritan Valley Community College
Carrie Tretola, Rider University
The Next Generation Science Standards (NGSS) cleverly weave three dimensions of learning together to help K-12 teachers of science guide learners: science and engineering practices (SEPs), cross cutting concepts (XCCs), and disciplinary core ideas (DCIs). Implementing a three dimensional curriculum is a challenging task for teachers for several reasons whether done by revising old curricula or using a newly published product. Some difficult steps include: designing instruction that will guide learners to make sense of and use DCIs in the context of XCCs; selecting SEPs that can best support DCI and XCC learning; identifying natural phenomena or engineering scenarios that engage DCIs and XCCs; creating a series of three dimensional learning tasks that enable learners to complete a full learning cycle; and making XCCs and SEPs explicit in learning experiences. We have been guiding teachers from 18 districts to develop skills to revise and/or evaluate lessons for NGSS alignment. Teachers already introduced to the NGSS through other programs participated in a four day program stretched over seven months. The program included gradual orientation to the three dimensions as well as engineering DCIs, lesson revision, cross-grade team collaborations, and study of student learning artifacts. More NGSS experienced teachers have been exploring approaches to adding civic engagement in the sciences as a way to align with NGSS engineering expectations. A next for the lesson revision group is to explore how to assess three dimensional learning. A summary of our program will be presented and attendees will be engaged in developing a resource that helps teachers identify natural phenomena and engineering scenarios related to DCIs and XCCs.