Use of Data and Visualization in the Space Weather Classroom

Thursday 4:30pm-5:30pm Red Gym
Poster Session

Author

Dorothea Ivanova, Embry Riddle Aeronautical University-Prescott
Engaging students in using real data to address scientific questions is an integral aspect of aerospace education. The goal of this study is to examine how space weather students used, analyzed, and understood real-time datasets and existing NASA visualizing resources to explore scientific questions during the last six years of the Space Weather course in the Arizona campus of Embry-Riddle Aeronautical University.
The Community Coordinated Modelling Center of NASA Goddard Space Flight Center (http://ccmc.gsfc.nasa.gov/) provides a number of tools to model space weather events. Using the tools online for educational purposes in a space weather course is challenging and requires initialization data from various sources. Data from STEREO /SECCHI, SOHO/LASCO spacecrafts, and from instruments on the International Space Station were analyzed and incorporated in modeling runs in the classroom to study space weather events.
Currently, forecasting of Coronal Mass Ejection (CME) trajectories through the solar system is an active research topic. Visualizing and forecasting CMEs, their properties, evolution through time, and dynamics is a fundamental aspect of the space weather education process. Our students, the space weather forecasters, scientists, and the general space weather community use the NASA searchable database. It contains many types of space weather activities, such as flares, CMEs, and geomagnetic storms. These events are the most vital for space weather because they can cause the most significant damage if they are Earth-directed. During space weather events students can also track auroras, space weather alerts, solar wind, and satellite imagery of the Sun using the data resources. Working with real research data teaches students how to describe and interpret the complex space weather data and the impact of the strong space storm events. Students learn skills that help them run the heliosphere models and understand how to analyze their output.