CURE Examples
Discipline
Core Competencies
- Asking questions (for science) and defining problems (for engineering) 37 matches
- Developing and using models 14 matches
- Planning and carrying out investigations 35 matches
- Analyzing and interpreting data 50 matches
- Using mathematics and computational thinking 23 matches
- Constructing explanations (for science) and designing solutions (for engineering) 17 matches
Nature of Research
State
Target Audience
Results 11 - 20 of 86 matches
Synthesis and characterization of KLVFF derivatives: Propensity to aggregate?
Kalyani Maitra, California State University-Fresno
The aggregation of β-amyloid peptide plaques in the brain plays an important role in Alzheimer's disease (AD). Studies have shown that the specific peptide sequence of KLVFF (lysine, leucine, valine, phenylalanine, phenylalanine) has an important role in β-amyloid formation. In this research, pentapeptide derivatives of KLVFF containing nonpolar, hydrophobic amino acids will be synthesized and characterized by 1H-NMR spectroscopy. NMR-based structural studies will be done to understand the structure-function/activity relationship of these polypeptide chains in various solvents. This will provide a deeper insight about the process of aggregation of proteins in various physiological environment and its critical role in AD.
Nature of Research: Applied Research, Basic Research, Wet Lab/Bench Research
Target Audience: Upper Division, Major
Science Education Research for Pre-Service Elementary School Teachers
Dermot Donnelly, California State University-Fresno
This CURE focuses on supporting pre-service elementary school teachers to investigate predictors of peers' intentions to teach science in their future practice.
State: California
Target Audience: Introductory
CURE Duration: A full term
Designing Authentic Undergraduate Experiences in Research (DAUER)
Joseph Ross, California State University-Fresno
In this research experience, students will learn about how inheritance of diverse genetic material from their parents can impact the health (fecundity) of offspring. Students will design experiments to mate pairs of populations from a diverse global collection of microscopic worms and measure and compare the fecundities of their hybrid offspring.
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term
Redesign of BIOL 1A Lab
Tricia Van Laar, California State University-Fresno
Core Competencies: Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
State: California
Target Audience: Major, Introductory
CURE Duration: Half a term
Determining the Calcium and Magnesium Ions in Water (Total Water Hardness)
Candice Cortney, California State University-Fresno
CHEM 1AL is laboratory course that introduces laboratory methods in general chemistry for undergraduates who have declared, or interested in, a science major. The CURE research for this laboratory will be centered around students determining the total hardness of water from different sources of water (i.e. bottled, filtered, tap). This CURE design will span across seven consecutive weeks and this will allow students to plan, propose, implement, analyze, and present their results. Implementing a CURE design into this course will give students experience with research and reinforce proper laboratory techniques.
State: California
Target Audience: Introductory
CURE Duration: A few class periods
Zero distribution of polynomials generated from combinatorial generating functions
Khang Tran, California State University-Fresno
Students lean how to find the location of zeros of sequences of polynomials defined recursively (the current term is given by a combination of previous terms in the sequence). The zeros of these polynomials are points in the complex plane and they could lie on or approach a curve which is the object of investigation. The sequences of polynomials are generated by generating functions obtained from combinatorial enumeration or graph theory which have impact in the pure math community.
CURE Duration: Multiple terms
Applied Linear Statistical Models
Mario Banuelos, California State University-Fresno
In this CURE, students will use descriptive and inferential statistics through linear models on new data sets, either directly affecting the local or research community.
State: California
CURE Duration: Multiple terms, A full term
Using R to Build Powerful Predictive Models for Kaggle Competitions
Earvin Balderama, California State University-Fresno
Core Competencies: Using mathematics and computational thinking, Analyzing and interpreting data, Developing and using models
Nature of Research: Informatics/Computational Research, Applied Research
State: California
Target Audience: Non-major, Major, Upper Division
CURE Duration: A full term
Race & Incarceration in The USA Overtime: Analysis of Trends & Forecast
Shyamal Das, Elizabeth City State University
The course in Race and Ethnic Relations examines the evolving nature of America's social and cultural diversity in terms of different race and ethnic groups (Whites, Blacks, Hispanics, Asian-Americans, and American-Indians), and the issues of racial prejudice, hatred, and discrimination in the country. In so doing, students complete the final paper based on research on the relationship between race and incarceration. The research utilizes arrest data from the Bureau of Justice Statistics website. Students derive the research questions and corresponding hypotheses based on their review of literature. Based on their data analysis, they attempt to explain or interpret the arrest data on the relationship between race and the arrest rates by types of crimes. There two steps: (1) individuals complete data gathering and analysis as well as interpretation in the first place; and (2) groups will be formed by at least three students in each. The groups will prepare the final group paper and present the findings in the class. The current assignment illustrates on the Step 1 of the final project. Each student will select an assigned crime type (see the Assignment Topics) from the Bureau of Justice Statistics database, and run the graphs to show the trends by race. Assess whether students can explain the arrest rates by race. Then each student runs another analysis to forecast the arrest rates for the coming ten to fifteen years. The final group outcomes will be presented in the class. The proposed CURE incorporates a STEM component into social science as students run forecasting models for an important social problem in the USA.
Nature of Research: Basic Research
Target Audience: Upper Division, Non-major, Major
CURE Duration: A full term
Investigating Neural Stem Cell Regulation in the Zebrafish Brain
Rolf Karlstrom, University of Massachusetts-Amherst
By now we have all heard about adult neural Stem Cells (nSCs) and the great promise they hold for treating neurological diseases, especially neurodegenerative diseases such as Parkinson's Disease or Alzheimer's Disease. We'll talk more about these cells in the course. In order to be useful in treating human disease, we must first learn what controls nSC division (proliferation), and what controls the types of neurons and glia that are produced (differentiation). Many labs around the world are working hard on these problems using a variety of lab animals; from worms to flies to fish to rodents to humans (using human induced Pluripotent Stem (iPS) cells). In this course we will take advantage of the experimentally accessible larval zebrafish to perform experiments designed to learn more about the regulation of nSCs and neurogenesis, the process of making new neurons and glial cells needed to make a functioning vertebrate brain.Why are new neurons (and glia, never forget glia) produced in the adult brain? One obvious answer is that this adult neurogenesis helps maintain the brain as it ages (e.g. replacing cells that die). While this may be true to some degree, especially for glial cells, we know that most cells in the brain simply aren't replaced when they die (a fact highlighted in neurodegenerative diseases) and it is not simple to replace functional neuronal connections. A relatively new idea is that new neurons and glia may be generated in parts of the brain as a normal part of the brains ability to function to guide behavior and respond to the environment. In this course students will learn about the regulation of stem cell proliferation and differentiation and we expore the idea that the generation of new neurons is part of normal brain function, helping zebrafish larvae to maintain internal physiology (homeostasis) in response to a changing environment. Students will become familiar with zebrafish embryonic and larval development, will design and implement experimental treatments of larvare, dissect larval brains, perform a chemical reaction to fluorescently mark proliferating cells, image larval brains using a fluorescent microscope, and count proliferating cells.