CURE Examples
Core Competencies
- Asking questions (for science) and defining problems (for engineering) 2 matches
- Developing and using models 1 match
- Planning and carrying out investigations 2 matches
- Analyzing and interpreting data 2 matches
- Using mathematics and computational thinking 1 match
- Constructing explanations (for science) and designing solutions (for engineering) 1 match
Nature of Research
CURE Duration
Results 1 - 2 of 2 matches
Community Flood Risk Assessment from Rising/Surging Seas Project
Kevin Kupietz, Elizabeth City State University
Globally 634 million people, 10% of the world's population, live in coastal areas less than 10 meters above sea level. According to 2010 census data, 123 million people, 39% of the United States population, live in coastal counties with an estimated increase to this number by 8% in the 2020 census. As natural disasters have been seen to increase in frequency and severity in the past five years coupled with expected sea rises from climate change it is important that anyone involved with the safety and resiliency planning of their organization/community have an understanding of how to scientifically assess risk from flooding in order to mitigate and recover from the effects. This project allows students the ability to develop skills to utilize computer modeling systems and to apply the data to real world communities in examining risk to structures as well as different groups in the community.
Core Competencies: Developing and using models, Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Nature of Research: Applied Research
State: North Carolina
Target Audience: Major, Non-major, Upper Division
CURE Duration: A full term
Integration of a nanoparticles-based biosensing assay into a capillary column
Swarnapali Indrasekara, University of North Carolina at Charlotte
In this CURE project, junior and senior level chemistry students will be introduced to nanochemistry and its application in interdisciplinary research. Students will learn the use of chemistry concepts they have already learnt and also new spectroscopy and physical chemistry concepts. They will use that knowledge to develop an optical biosensor using nanoparticles in a capillary column as a potential point-of-care assay format.
Core Competencies: Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Wet Lab/Bench Research
State: North Carolina
Target Audience: Major, Upper Division