CURE Examples
Discipline Show all
Core Competencies
- Asking questions (for science) and defining problems (for engineering) 11 matches
- Developing and using models 4 matches
- Planning and carrying out investigations 9 matches
- Analyzing and interpreting data 13 matches
- Using mathematics and computational thinking 6 matches
- Constructing explanations (for science) and designing solutions (for engineering) 6 matches
Nature of Research
Results 1 - 10 of 14 matches
BIOL 189T Fungal Biology
Alija Mujic, California State University-Fresno
The diversity, community structure, and functional diversity of fungi in the high Sierra is understudied and is largely unknown from the Sierra Nevada foothills. Through use of direct field sampling I will engage BIOL189T students in sampling efforts to elucidate the fungal biology of these understudied habitats. Students will sample fungal sporocarps (mushrooms) from existing field plots established by the National Environmental Observation Network (NEON) and use morphological identification techniques and DNA barcoding methods to identify the fungal diversity in these habitats. Future iterations of the course will likely focus upon selected fungal taxa identified in previous iterations of the course to investigate the phenology and ecological interactions of the fungal community in these habitats in NEON plots.
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data, Developing and using models, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Field Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term
Designing Authentic Undergraduate Experiences in Research (DAUER)
Joseph Ross, California State University-Fresno
In this research experience, students will learn about how inheritance of diverse genetic material from their parents can impact the health (fecundity) of offspring. Students will design experiments to mate pairs of populations from a diverse global collection of microscopic worms and measure and compare the fecundities of their hybrid offspring.
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term
Redesign of BIOL 1A Lab
Tricia Van Laar, California State University-Fresno
Core Competencies: Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
State: California
Target Audience: Major, Introductory
CURE Duration: Half a term
Using CRISPR/Cas9 technology to investigate the molecular genetic basis of root traits in plants
Dong Wang, University of Massachusetts-Amherst
This CURE brings authentic research on plant molecular biology to undergraduate students in an advanced lab course. The experimental design investigates plant genes controlling root traits utilizing CRISPR/Cas9 technology in transgenic hairy roots. By cloning and delivering CRISPR/Cas9 constructs, students will acquire powerful skills in molecular biology such as Golden Gate cloning. By combining fast-growing hairy roots (a versatile system suitable for multiple plant species) with candidate root genes, students can advance genotyping to phenotyping in one semester. The outcome is a hands-on experience of the power to genome modification beneficial to the students' future career.
Kinetics of bioorthogonal reactions
Jen Heemstra, Emory University
Bioorthogonal reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels–Alder (IEDDA) are widely used for labeling of biomolecules, which in turn enables numerous applications in basic science and biotechnology. The key characteristic of these reactions is the ability of the functional groups involved to react with each other while remaining inert to the other functional groups found in nature. Despite the wide use of these chemistries, relatively few studies have evaluated the effect of reaction conditions on the kinetics of the reaction, and it would be of value to the scientific community to know how factors such as buffer identity, pH, ionic strength, and temperature impact reaction rate. In this CURE, students synthesize reagents or biomolecules and utilize UV spectrophotometry to measure the reaction rate under varying conditions. Students communicate their results in a final report written in the format of a peer-reviewed publication, and this CURE has yielded peer-reviewed research publications to share the data with the scientific community.
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Georgia
Target Audience: Major, Upper Division
CURE Duration: A full term
Genetic Engineering of Zebrafish to Investigate Tumorigenicity of Cancer Mutations
Terry Shackleford, St. Marys University
Core Competencies: Asking questions (for science) and defining problems (for engineering), Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research
State: Texas
Target Audience: Major
CURE Duration: A full term
Going from big genomics data, to useful data, to experiments in diabetes
Talitha Van der Meulen, University of California-Davis
In diabetes, blood glucose levels are too high and people with diabetes suffer from severe side-effects that include cardiovascular disease, renal failure and blindness. Our lab is interested in studying the different cell types in the pancreatic islet that together regulate blood glucose levels. Our ultimate goal is to understand how human islet cells function and change in health and diabetes and then use this knowledge to contribute to a cure for or treatment of diabetes. In this CURE, students will become familiar with using so-called "omics" data and translating the data into a testable experiment that they will perform. The experiments will be done in the context of diabetes research that is ongoing in the Huising lab at UC Davis. Currently, we have large sets of information about gene expression at the mRNA level in healthy alpha, beta, and delta cells of the mouse pancreatic islet. Students will use bioinformatics techniques to process these sets and compare expression among these cell types during the first half of the course. For the second half, they will use this comparison to select a gene whose expression they will verify at the protein level in mouse pancreatic islets using fluorescent staining of tissue slices, followed by imaging and image-quantification. This process is a first step towards our ultimate goal of studying human islet cells. Once we have tools verified in mouse tissue, we can then apply these to human tissues. Therefore, we ask students to present their validation to the Huising lab.
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: California
CURE Duration: A full term
What's in your water?
Robin Cotter, Phoenix College
Water quality is an issue that impacts everyone, but do we really know what is in the water we drink? Water quality is an issue that impacts everyone, but do we really know what is the water we drink? Chemical and bacteriological contamination of water has serious implications for human health. For example, in agricultural areas, pesticides and fertilizers can lead to contamination of groundwater. High levels of nitrate can lead to methaemoglobinaemia (blue baby syndrome). Solvents and heavy metals generated during mining can lead to toxicosis. As witnessed in Flint, Michigan, the use of lead pipes in plumbing can lead to elevated levels of lead in drinking water which can impact the mental development in children. Perfluorooctanoic acid (PFOA or C8) is a man-made chemical used in the process of making Teflon. PFOA's pose global health concerns as they persist in the environment and human body for extended periods of time and can now be detected in almost everyone's blood. To address this issue, introductory biology, microbiology and chemistry students at our 2-year community college will work together to test water from local water treatment plants for the presence of chemical and biological contaminants. Students will learn about the scientific process as they perform background research on EPA water standards, potential sources of water contaminants, and the water treatment process. Students will hold virtual meetings with community, university, and industry partners to identify relevant research questions related to water treatment. Students will then do a site visit to a local water treatment plant where they will collect and analyze water samples from different stages of the water treatment process. Students will test the water samples for the presence of organic pollutants and microbial pathogens. This data will be entered into a regional database and compared to water quality reports posted on the Arizona Department of Environmental Quality (ADEQ) website. Students will then present their findings at community meetings, STEM outreach events, and via virtual poster sessions.
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Target Audience: Introductory, Upper Division, Major
CURE Duration: Half a term
The effects of grazing of water coliforms and antibiotic resistant microbes
Kristy Duran, Adams State University; Benita Brink, Adams State University
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering)
Nature of Research: Wet Lab/Bench Research, Basic Research
State: Colorado
Target Audience: Introductory, Major
CURE Duration: A few class periods
Introducing hands on concepts of Mammalian Cell Culture and in vitro drug studies in Undergraduate course shells.
HIRENDRA BANERJEE, Elizabeth City State University
The process of learning is both visual and auditory and in the STEM fields, hands on and practicums enhances student learning, retention and understanding of the complex scientific concepts than just memorizing facts from class room lectures. Thus we plan to implement short hands on research modules in our Cell Biology and Human Physiology courses involving projects teaching students with mammalian cell culture techniques and in vitro drug testing skills. Students will learn to culture mammalian cancer cell lines with culture mediums and maintain the cultures in carbon dioxide incubators at ideal temperature, they will then treat them with novel anti cancer compounds to test the efficacy of these drugs and the IC50 doses(dose at which 50% cells dies).The data obtained will be statistically analyzed and results reviewed to study whether it aligns with the hypothesis and specific aims; students will then present their findings in a small research paper and short seminars in class along with their peers, they will be graded according to a rubric that will be provided to them in the beginning of the research experience process. Thus this process will align with CURE objectives of REU incorporation in undergraduate courses.
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Using mathematics and computational thinking, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: North Carolina
Target Audience: Major
CURE Duration: A full term