CURE Examples



Current Search Limits:
Life Sciences
Using mathematics and computational thinking

Results 1 - 10 of 10 matches

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms

Designing Authentic Undergraduate Experiences in Research (DAUER)
Joseph Ross, California State University-Fresno
In this research experience, students will learn about how inheritance of diverse genetic material from their parents can impact the health (fecundity) of offspring. Students will design experiments to mate pairs of populations from a diverse global collection of microscopic worms and measure and compare the fecundities of their hybrid offspring.

Discipline: Life Sciences:Genetics, Evolution, Life Sciences, Molecular Biology
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term

Brain Mapping of Psychiatric Disorders
Chris Miller, California State University-Fresno
This course will introduce students to the neuroscience of psychiatric disorders by guiding them through the process of conducting a meta-analysis of fMRI studies of a particular psychiatric disorder of their choice.

Discipline: Social Sciences:Psychology, Statistics, Computer Science, Health Sciences, Life Sciences:Anatomy and Physiology
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Using mathematics and computational thinking
Nature of Research: Informatics/Computational Research
State: California
Target Audience: Major
CURE Duration: A full term, Multiple terms

Investigating local climate change impacts in a STEM first year learning community
Mara Brady, California State University-Fresno
still in progress...

Discipline: Environmental Science:Water Quality and Quantity, Global Change and Climate, Chemistry:Environmental Chemistry, Environmental Science:Waste, Soils and Agriculture, Geoscience:Soils, Geoscience, Life Sciences:Ecology, Geoscience:Biogeosciences, Environmental Science, Land Use and Planning, Sustainability, Air Quality
Core Competencies: Using mathematics and computational thinking, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations
Nature of Research: Applied Research, Field Research
Target Audience: Major
CURE Duration: Multiple terms

Kinetics of bioorthogonal reactions
Jen Heemstra, Emory University
Bioorthogonal reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels–Alder (IEDDA) are widely used for labeling of biomolecules, which in turn enables numerous applications in basic science and biotechnology. The key characteristic of these reactions is the ability of the functional groups involved to react with each other while remaining inert to the other functional groups found in nature. Despite the wide use of these chemistries, relatively few studies have evaluated the effect of reaction conditions on the kinetics of the reaction, and it would be of value to the scientific community to know how factors such as buffer identity, pH, ionic strength, and temperature impact reaction rate. In this CURE, students synthesize reagents or biomolecules and utilize UV spectrophotometry to measure the reaction rate under varying conditions. Students communicate their results in a final report written in the format of a peer-reviewed publication, and this CURE has yielded peer-reviewed research publications to share the data with the scientific community.

Discipline: Chemistry, Life Sciences:Molecular Biology, Life Sciences, Chemistry:Organic Chemistry, Biochemistry
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Georgia
Target Audience: Major, Upper Division
CURE Duration: A full term

Going from big genomics data, to useful data, to experiments in diabetes
Talitha Van der Meulen, University of California-Davis
In diabetes, blood glucose levels are too high and people with diabetes suffer from severe side-effects that include cardiovascular disease, renal failure and blindness. Our lab is interested in studying the different cell types in the pancreatic islet that together regulate blood glucose levels. Our ultimate goal is to understand how human islet cells function and change in health and diabetes and then use this knowledge to contribute to a cure for or treatment of diabetes. In this CURE, students will become familiar with using so-called "omics" data and translating the data into a testable experiment that they will perform. The experiments will be done in the context of diabetes research that is ongoing in the Huising lab at UC Davis. Currently, we have large sets of information about gene expression at the mRNA level in healthy alpha, beta, and delta cells of the mouse pancreatic islet. Students will use bioinformatics techniques to process these sets and compare expression among these cell types during the first half of the course. For the second half, they will use this comparison to select a gene whose expression they will verify at the protein level in mouse pancreatic islets using fluorescent staining of tissue slices, followed by imaging and image-quantification. This process is a first step towards our ultimate goal of studying human islet cells. Once we have tools verified in mouse tissue, we can then apply these to human tissues. Therefore, we ask students to present their validation to the Huising lab.

Discipline: Life Sciences, Health Sciences, Life Sciences:Cell Biology
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: California
CURE Duration: A full term

What's in your water?
Robin Cotter, Phoenix College
Water quality is an issue that impacts everyone, but do we really know what is in the water we drink? Water quality is an issue that impacts everyone, but do we really know what is the water we drink? Chemical and bacteriological contamination of water has serious implications for human health. For example, in agricultural areas, pesticides and fertilizers can lead to contamination of groundwater. High levels of nitrate can lead to methaemoglobinaemia (blue baby syndrome). Solvents and heavy metals generated during mining can lead to toxicosis. As witnessed in Flint, Michigan, the use of lead pipes in plumbing can lead to elevated levels of lead in drinking water which can impact the mental development in children. Perfluorooctanoic acid (PFOA or C8) is a man-made chemical used in the process of making Teflon. PFOA's pose global health concerns as they persist in the environment and human body for extended periods of time and can now be detected in almost everyone's blood. To address this issue, introductory biology, microbiology and chemistry students at our 2-year community college will work together to test water from local water treatment plants for the presence of chemical and biological contaminants. Students will learn about the scientific process as they perform background research on EPA water standards, potential sources of water contaminants, and the water treatment process. Students will hold virtual meetings with community, university, and industry partners to identify relevant research questions related to water treatment. Students will then do a site visit to a local water treatment plant where they will collect and analyze water samples from different stages of the water treatment process. Students will test the water samples for the presence of organic pollutants and microbial pathogens. This data will be entered into a regional database and compared to water quality reports posted on the Arizona Department of Environmental Quality (ADEQ) website. Students will then present their findings at community meetings, STEM outreach events, and via virtual poster sessions.

Discipline: Chemistry, Analytical Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Life Sciences, Microbiology, Chemistry:Organic Chemistry
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Target Audience: Introductory, Upper Division, Major
CURE Duration: Half a term

Introducing hands on concepts of Mammalian Cell Culture and in vitro drug studies in Undergraduate course shells.
HIRENDRA BANERJEE, Elizabeth City State University
The process of learning is both visual and auditory and in the STEM fields, hands on and practicums enhances student learning, retention and understanding of the complex scientific concepts than just memorizing facts from class room lectures. Thus we plan to implement short hands on research modules in our Cell Biology and Human Physiology courses involving projects teaching students with mammalian cell culture techniques and in vitro drug testing skills. Students will learn to culture mammalian cancer cell lines with culture mediums and maintain the cultures in carbon dioxide incubators at ideal temperature, they will then treat them with novel anti cancer compounds to test the efficacy of these drugs and the IC50 doses(dose at which 50% cells dies).The data obtained will be statistically analyzed and results reviewed to study whether it aligns with the hypothesis and specific aims; students will then present their findings in a small research paper and short seminars in class along with their peers, they will be graded according to a rubric that will be provided to them in the beginning of the research experience process. Thus this process will align with CURE objectives of REU incorporation in undergraduate courses.

Discipline: Life Sciences, Cell Biology, Health Sciences
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Using mathematics and computational thinking, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: North Carolina
Target Audience: Major
CURE Duration: A full term

Visualizing protein aggregates involved in human disease
Whitney Duim, University of California-Davis

Discipline: Chemistry:Physical Chemistry, Chemistry, Life Sciences:Cell Biology, Physics:Optics, Chemistry:Biochemistry
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Using mathematics and computational thinking
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Introductory
CURE Duration: A full term

Animal Genome to Phenome - A CURE for food security
Mulumebet Worku, North Carolina A & T State University

Discipline: Chemistry:Biochemistry, Life Sciences:Cell Biology, Genetics, Life Sciences, Molecular Biology
Core Competencies: Developing and using models, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Using mathematics and computational thinking
Nature of Research: Informatics/Computational Research, Basic Research, Applied Research
State: North Carolina
Target Audience: Major, Introductory
CURE Duration: Multiple terms