CURE Examples



Current Search Limits:
Environmental Science > Water Quality and Quantity

Results 1 - 7 of 7 matches

Water in Gen Chem
Ruthanne Paradise, University of Massachusetts-Amherst

Discipline: Chemistry:Environmental Chemistry, Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Chemistry:Analytical Chemistry
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Applied Research
State: Massachusetts
Target Audience: Introductory, Non-major, Major
CURE Duration: A full term

Determining the Calcium and Magnesium Ions in Water (Total Water Hardness)
Candice Cortney, California State University-Fresno
CHEM 1AL is laboratory course that introduces laboratory methods in general chemistry for undergraduates who have declared, or interested in, a science major. The CURE research for this laboratory will be centered around students determining the total hardness of water from different sources of water (i.e. bottled, filtered, tap). This CURE design will span across seven consecutive weeks and this will allow students to plan, propose, implement, analyze, and present their results. Implementing a CURE design into this course will give students experience with research and reinforce proper laboratory techniques.

Discipline: Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Chemistry:Analytical Chemistry, Environmental Chemistry
State: California
Target Audience: Introductory
CURE Duration: A few class periods

Investigating local climate change impacts in a STEM first year learning community
Mara Brady, California State University-Fresno
still in progress...

Discipline: Environmental Science:Water Quality and Quantity, Global Change and Climate, Chemistry:Environmental Chemistry, Environmental Science:Waste, Soils and Agriculture, Geoscience:Soils, Geoscience, Life Sciences:Ecology, Geoscience:Biogeosciences, Environmental Science, Land Use and Planning, Sustainability, Air Quality
Core Competencies: Using mathematics and computational thinking, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations
Nature of Research: Applied Research, Field Research
Target Audience: Major
CURE Duration: Multiple terms

Emerging Contaminants in Arizona
Frank Marfai, Phoenix College

Discipline: Environmental Science:Air Quality, Water Quality and Quantity, Waste, Statistics, Environmental Science
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data, Using mathematics and computational thinking, Developing and using models
Nature of Research: Basic Research, Applied Research
State: Arizona
Target Audience: Introductory, Upper Division, Non-major, Major
CURE Duration: Multiple terms, A full term

What's in your water?
Robin Cotter, Phoenix College
Water quality is an issue that impacts everyone, but do we really know what is in the water we drink? Water quality is an issue that impacts everyone, but do we really know what is the water we drink? Chemical and bacteriological contamination of water has serious implications for human health. For example, in agricultural areas, pesticides and fertilizers can lead to contamination of groundwater. High levels of nitrate can lead to methaemoglobinaemia (blue baby syndrome). Solvents and heavy metals generated during mining can lead to toxicosis. As witnessed in Flint, Michigan, the use of lead pipes in plumbing can lead to elevated levels of lead in drinking water which can impact the mental development in children. Perfluorooctanoic acid (PFOA or C8) is a man-made chemical used in the process of making Teflon. PFOA's pose global health concerns as they persist in the environment and human body for extended periods of time and can now be detected in almost everyone's blood. To address this issue, introductory biology, microbiology and chemistry students at our 2-year community college will work together to test water from local water treatment plants for the presence of chemical and biological contaminants. Students will learn about the scientific process as they perform background research on EPA water standards, potential sources of water contaminants, and the water treatment process. Students will hold virtual meetings with community, university, and industry partners to identify relevant research questions related to water treatment. Students will then do a site visit to a local water treatment plant where they will collect and analyze water samples from different stages of the water treatment process. Students will test the water samples for the presence of organic pollutants and microbial pathogens. This data will be entered into a regional database and compared to water quality reports posted on the Arizona Department of Environmental Quality (ADEQ) website. Students will then present their findings at community meetings, STEM outreach events, and via virtual poster sessions.

Discipline: Chemistry, Analytical Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Life Sciences, Microbiology, Chemistry:Organic Chemistry
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Target Audience: Introductory, Upper Division, Major
CURE Duration: Half a term

The effects of grazing of water coliforms and antibiotic resistant microbes
Kristy Duran, Adams State University; Benita Brink, Adams State University

Discipline: Life Sciences:Cell Biology, Environmental Science:Water Quality and Quantity, Soils and Agriculture, Life Sciences:Microbiology, Life Sciences, Environmental Science
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering)
Nature of Research: Wet Lab/Bench Research, Basic Research
State: Colorado
Target Audience: Introductory, Major
CURE Duration: A few class periods

Introduction to GIS using CURE
Elizabeth Bollen, Adams State University; Chayan Lahiri, Adams State University
Geographic information systems (GIS) are used in many capacities across every discipline to help communities, governments, and businesses make informed decisions. This Introduction to GIS CURE course aims to assist local ranches by locating sampling sites for watershed analyses. Students in this GIS course will develop skills manipulating data by learning GIS software. The students themselves are tasked with identifying sampling site criteria for the broader study, which will assist other student researchers in locating scientifically viable, safe, and accessible sampling sites for watershed sample collection. Students in this course will also use knowledge gained in prior classes to make and defend decisions. Written reports, figure drafting, and group discussions will help students learn how to clearly and effectively communicate their findings and results. The knowledge and skills students' gain in this course will be used in future classes and are highly sought after by employers.

Discipline: Geoscience:Geology, Biogeosciences, Environmental Science:Land Use and Planning, Soils and Agriculture, Geoscience:Hydrology, Soils, Computer Science, Social Sciences, Life Sciences, Environmental Science:Ecosystems, Water Quality and Quantity
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Applied Research, Informatics/Computational Research
State: Colorado
Target Audience: Major, Non-major, Introductory
CURE Duration: Multiple terms, A full term