CURE Examples



Current Search Limits:
Chemistry

Results 1 - 10 of 32 matches

Synthesis of the Intermediate of a Catalytic Reaction: An NHC-Stabilized, First-Row Transition Metal Complex
Meng Zhou, Lawrence Technological University
The advanced synthesis laboratory course object allows students to study the synthesis, purification, and characterizations of a new diamagnetic organometallic complex of a first-row transition metal. The air-stable complex is stabilized by an N-heterocyclic carbene spectator ligand. It also bears an actor ligand and therefore, is potentially a reactive intermediate of a catalytic reaction. The synthesis of a reactive intermediate is the key to elucidate the mechanism of catalysis. The instructor chooses the first-row transition metal and the actor ligand based on his or her interests. The CURE starts from an NHC-ligated complex that does not bear this actor ligand but is otherwise similar. In our CURE, an anion ligand-replacement reaction was used to install the actor ligand, but an instructor may choose other approaches. The students will evaluate their results by standard spectroscopic analyses using UV-vis, FT-IR, and proton NMR (60 MHz or above) analysis.

Discipline: Chemistry:Organic Chemistry, Inorganic Chemistry
Nature of Research: Wet Lab/Bench Research, Basic Research
State: Michigan
Target Audience: Major, Upper Division
CURE Duration: A few class periods

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms

Laser spectroscopy of atmospherically relevant molecules and clusters in helium nanodroplets
Paul Raston, James Madison University
Superfluid helium nanodroplets present an ideal medium for the study of chemical dynamics at the molecular level. Their low temperature, enormous heat conductivity, and weakly interacting nature allow for the investigation of various things, such as how molecular rotation is effected by a solvent, and how molecules interact with each other. These two topics will be addressed in the lab by (1) measuring the spectra of unexplored molecules in helium nanodroplets and determining their rotational constants; this data will then be used to test known models describing the interaction between the molecule and helium solvent, and (2) synthesizing and characterizing unexplored molecular clusters in an effort to better understand molecular solvation; students will solvate the "unexplored molecule" with an atmospherically relevant species (O2, N2, H2O), and investigate the resulting clusters with laser Stark spectroscopy.

Discipline: Chemistry:Physical Chemistry
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Developing and using models, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: Virginia
Target Audience: Upper Division, Non-major, Major
CURE Duration: A few class periods, Multiple terms

Water in Gen Chem
Ruthanne Paradise, University of Massachusetts-Amherst

Discipline: Chemistry:Environmental Chemistry, Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Chemistry:Analytical Chemistry
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Applied Research
State: Massachusetts
Target Audience: Introductory, Non-major, Major
CURE Duration: A full term

Synthesis and characterization of KLVFF derivatives: Propensity to aggregate?
Kalyani Maitra, California State University-Fresno
The aggregation of β-amyloid peptide plaques in the brain plays an important role in Alzheimer's disease (AD). Studies have shown that the specific peptide sequence of KLVFF (lysine, leucine, valine, phenylalanine, phenylalanine) has an important role in β-amyloid formation. In this research, pentapeptide derivatives of KLVFF containing nonpolar, hydrophobic amino acids will be synthesized and characterized by 1H-NMR spectroscopy. NMR-based structural studies will be done to understand the structure-function/activity relationship of these polypeptide chains in various solvents. This will provide a deeper insight about the process of aggregation of proteins in various physiological environment and its critical role in AD.

Discipline: Chemistry:Biochemistry, Organic Chemistry, Chemistry
Nature of Research: Applied Research, Basic Research, Wet Lab/Bench Research
Target Audience: Upper Division, Major

Science Education Research for Pre-Service Elementary School Teachers
Dermot Donnelly, California State University-Fresno
This CURE focuses on supporting pre-service elementary school teachers to investigate predictors of peers' intentions to teach science in their future practice.

Discipline: Chemistry, Physics
State: California
Target Audience: Introductory
CURE Duration: A full term

Determining the Calcium and Magnesium Ions in Water (Total Water Hardness)
Candice Cortney, California State University-Fresno
CHEM 1AL is laboratory course that introduces laboratory methods in general chemistry for undergraduates who have declared, or interested in, a science major. The CURE research for this laboratory will be centered around students determining the total hardness of water from different sources of water (i.e. bottled, filtered, tap). This CURE design will span across seven consecutive weeks and this will allow students to plan, propose, implement, analyze, and present their results. Implementing a CURE design into this course will give students experience with research and reinforce proper laboratory techniques.

Discipline: Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Chemistry:Analytical Chemistry, Environmental Chemistry
State: California
Target Audience: Introductory
CURE Duration: A few class periods

Yeast, metabolism and suicide: a brewing introduction to biochemical research
Laurent Dejean, California State University-Fresno
This course provides the student with a range of techniques and methodology appropriate to the study or phenomena at the biochemical, cellular, and organismic levels. In the spirit of genuine undergraduate research (CURE), the students will be involved directly in research that is ongoing in the Dejean's lab, i.e. the study of the mechanisms used by Bcl-2 family proteins to cross-regulate cell death and energy metabolism. The students' involvement in this type of research will be following a set of preliminary experiments which are aimed at familiarizing the students with common biochemistry lab skills; and with the manipulation of the yeast Saccharomyces cerevisiae which is to be used as the main model system in their research. Finally, the students will also engage directly with primary literature sources in preparation of their lab reports and an eventual presentation of their research at the Fresno State CURE symposium at the end of the semester.

Discipline: Chemistry:Biochemistry, Life Sciences:Cell Biology, Microbiology, Molecular Biology
Core Competencies: Analyzing and interpreting data, Developing and using models, Planning and carrying out investigations
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Major, Upper Division

Fruit Flies as a Model of Human Neurodegenerative Disease
Joy Goto, California State University-Fresno
Upper-division biochemistry and chemistry majors will learn and iteratively apply the techniques of protein purification, DNA and protein gels, Western blot, DNA isolation, transformation, enzyme characterization to research the utility of fruit fly (D. melanogaster) to model the human neurodegenerative disease (e.g. ALS - Lou Gehrig's, Parkinson's Disease, Alzheimer's Disease).

Discipline: Chemistry, Biochemistry
Nature of Research: Wet Lab/Bench Research, Applied Research
State: California
Target Audience: Major

Investigating local climate change impacts in a STEM first year learning community
Mara Brady, California State University-Fresno
still in progress...

Discipline: Environmental Science:Water Quality and Quantity, Global Change and Climate, Chemistry:Environmental Chemistry, Environmental Science:Waste, Soils and Agriculture, Geoscience:Soils, Geoscience, Life Sciences:Ecology, Geoscience:Biogeosciences, Environmental Science, Land Use and Planning, Sustainability, Air Quality
Core Competencies: Using mathematics and computational thinking, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations
Nature of Research: Applied Research, Field Research
Target Audience: Major
CURE Duration: Multiple terms