CURE Examples
Discipline
Core Competencies
- Asking questions (for science) and defining problems (for engineering) 7 matches
- Developing and using models 1 match
- Planning and carrying out investigations 7 matches
- Analyzing and interpreting data 9 matches
- Using mathematics and computational thinking 2 matches
- Constructing explanations (for science) and designing solutions (for engineering) 5 matches
Nature of Research
State
Results 1 - 9 of 9 matches
Redesign of BIOL 1A Lab
Tricia Van Laar, California State University-Fresno
Core Competencies: Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
State: California
Target Audience: Major, Introductory
CURE Duration: Half a term
Polymer/Materials Structure-Property Relationship Investigations for General Chemistry Students
Zuleikha Kurji, Saint Marys College of California
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Wet Lab/Bench Research, Applied Research
State: California
Target Audience: Introductory, Non-major, Major
CURE Duration: A few class periods, Half a term
Extraction of Lycopene and other Antioxidants from Tomatoes
Marion Franks, North Carolina A & T State University
This CURE is focused on exposing undergraduate students to the use of chemical instrumentation to observe the composition of antioxidants in natural products. Students will learn how to read scientific literature, develop a hypothesis, plan research, interpret data, and relate the data to ongoing phenomenon.
Core Competencies: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research
Target Audience: Non-major, Major, Upper Division
CURE Duration: Half a term
Photocatalytic degradation of model compounds
Sarah St. Angelo, Dickinson College
This CURE is intended for a junior/senior level inorganic chemistry laboratory. Students will synthesize various composite nanomaterials than can be tested for photocatalytic activity for the degradation of model compounds (organic dye molecules). The components of the nanocomposites will be varied and the effects on the photocatalysis will be measured. Students will synthesize the nanocomposites and characterize them with several techniques useful to materials chemists, such as SEM, XRD, and AA.
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research
State: Pennsylvania
Target Audience: Major, Upper Division
CURE Duration: Half a term, Multiple terms
Spatial Distribution of Food Resources in the Phoenix Metro Area.
Elena Ortiz, Phoenix College
The main research question/ driving question is: How are food resources distributed across the urban landscape? Students will explore previous work on food deserts in the Phoenix Metro area, use census data, USDA data, collect and compile data on the local food system, create data visualizations and maps, and determine future data needs. Students will also determine stakeholders and community members that could act on the results of their findings and identify appropriate ways to communicate their research to those audiences.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
Nature of Research: Applied Research
State: Arizona
Target Audience: Non-major
CURE Duration: Multiple terms, Half a term
What's in your water?
Robin Cotter, Phoenix College
Water quality is an issue that impacts everyone, but do we really know what is in the water we drink? Water quality is an issue that impacts everyone, but do we really know what is the water we drink? Chemical and bacteriological contamination of water has serious implications for human health. For example, in agricultural areas, pesticides and fertilizers can lead to contamination of groundwater. High levels of nitrate can lead to methaemoglobinaemia (blue baby syndrome). Solvents and heavy metals generated during mining can lead to toxicosis. As witnessed in Flint, Michigan, the use of lead pipes in plumbing can lead to elevated levels of lead in drinking water which can impact the mental development in children. Perfluorooctanoic acid (PFOA or C8) is a man-made chemical used in the process of making Teflon. PFOA's pose global health concerns as they persist in the environment and human body for extended periods of time and can now be detected in almost everyone's blood. To address this issue, introductory biology, microbiology and chemistry students at our 2-year community college will work together to test water from local water treatment plants for the presence of chemical and biological contaminants. Students will learn about the scientific process as they perform background research on EPA water standards, potential sources of water contaminants, and the water treatment process. Students will hold virtual meetings with community, university, and industry partners to identify relevant research questions related to water treatment. Students will then do a site visit to a local water treatment plant where they will collect and analyze water samples from different stages of the water treatment process. Students will test the water samples for the presence of organic pollutants and microbial pathogens. This data will be entered into a regional database and compared to water quality reports posted on the Arizona Department of Environmental Quality (ADEQ) website. Students will then present their findings at community meetings, STEM outreach events, and via virtual poster sessions.
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Target Audience: Introductory, Upper Division, Major
CURE Duration: Half a term
Synthesis of novel 1,2,4-triazine fluorescent dyes and bioorthogonal labeling of protein
david kamber, Towson University
The purpose of this CURE project is to design an expedient synthetic route to access 1,2,4-triazine fluorophores and analyze the [4+2] inverse electron demand Diels-Alder reaction with bicyclononyne.
Core Competencies: Analyzing and interpreting data, Planning and carrying out investigations
Target Audience: Non-major, Major
CURE Duration: Half a term
Hydridotris(pyrazolyl)borate Ruthenium(II) Complexes Containing Phosphine or Phosphite Ligands
Jocelyn Lanorio, Illinois College
This course-based research will introduce students in an advanced inorganic chemistry course to air-sensitive and catalysis. Students will examine a series of ruthenium(II) hydridotris(pyrazolyl)borato complexes with phosphine or phosphite ligands using modern instrumentation and specialized equipment such as Schlenk line and drybox. The first two meetings should be devoted for literature search, familiarization of instrument operation, and selection of phosphine or phosphite ligand along with student submitting proposal that contains the safety protocols and handling of the chemicals involved in their selected system. Four meetings will then be designated for the synthesis and characterization of the complex. The students run catalytic and control reactions and determine the percent yield of the product using 1H NMR. The synthesis and catalytic conditions are modified from previously published research articles. This experiment combines complex synthesis, characterization, data analysis and data sharing.
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Illinois
Target Audience: Upper Division, Major
CURE Duration: A few class periods, Half a term, A full term
Understanding Noncovalent Interactions and Binding through PRRSM
Amanda Hargrove, Duke University
This CURE was designed to increase instruction on noncovalent interactions and intermolecular forces, provide laboratory experiences in biochemistry and chemical biology, and deliver a more consistent chemistry research experience to undergraduates at Duke University while staying within the existing curriculum. First, the concept of noncovalent interactions is visualized in an applied setting by examining 3D structures of small molecule:RNA interactions through a portable virtual reality (VR) environment. Next, using knowledge gained in the Hargrove lab regarding small molecule:RNA interactions along with the literature examples, teams of students evaluate known small molecule:RNA interactions, pose original scientific questions, and design a hypothesis-driven experiment that can be readily tested with commercially available materials using a standard fluorimeter or plate reader. These experiments directly contribute to research that examines patterns in the recognition of RNA structure by small molecules, and the students are able to assess their contribution to this ongoing interdisciplinary project.
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: North Carolina
Target Audience: Major, Upper Division
CURE Duration: Half a term