CURE Examples



Current Search Limits:
Basic Research
Non-major

Results 1 - 8 of 8 matches

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms

Laser spectroscopy of atmospherically relevant molecules and clusters in helium nanodroplets
Paul Raston, James Madison University
Superfluid helium nanodroplets present an ideal medium for the study of chemical dynamics at the molecular level. Their low temperature, enormous heat conductivity, and weakly interacting nature allow for the investigation of various things, such as how molecular rotation is effected by a solvent, and how molecules interact with each other. These two topics will be addressed in the lab by (1) measuring the spectra of unexplored molecules in helium nanodroplets and determining their rotational constants; this data will then be used to test known models describing the interaction between the molecule and helium solvent, and (2) synthesizing and characterizing unexplored molecular clusters in an effort to better understand molecular solvation; students will solvate the "unexplored molecule" with an atmospherically relevant species (O2, N2, H2O), and investigate the resulting clusters with laser Stark spectroscopy.

Discipline: Chemistry:Physical Chemistry
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Developing and using models, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: Virginia
Target Audience: Upper Division, Non-major, Major
CURE Duration: A few class periods, Multiple terms

Race & Incarceration in The USA Overtime: Analysis of Trends & Forecast
Shyamal Das, Elizabeth City State University
The course in Race and Ethnic Relations examines the evolving nature of America's social and cultural diversity in terms of different race and ethnic groups (Whites, Blacks, Hispanics, Asian-Americans, and American-Indians), and the issues of racial prejudice, hatred, and discrimination in the country. In so doing, students complete the final paper based on research on the relationship between race and incarceration. The research utilizes arrest data from the Bureau of Justice Statistics website. Students derive the research questions and corresponding hypotheses based on their review of literature. Based on their data analysis, they attempt to explain or interpret the arrest data on the relationship between race and the arrest rates by types of crimes. There two steps: (1) individuals complete data gathering and analysis as well as interpretation in the first place; and (2) groups will be formed by at least three students in each. The groups will prepare the final group paper and present the findings in the class. The current assignment illustrates on the Step 1 of the final project. Each student will select an assigned crime type (see the Assignment Topics) from the Bureau of Justice Statistics database, and run the graphs to show the trends by race. Assess whether students can explain the arrest rates by race. Then each student runs another analysis to forecast the arrest rates for the coming ten to fifteen years. The final group outcomes will be presented in the class. The proposed CURE incorporates a STEM component into social science as students run forecasting models for an important social problem in the USA.

Discipline: Social Sciences:Sociology, Statistics
Nature of Research: Basic Research
Target Audience: Upper Division, Non-major, Major
CURE Duration: A full term

Synthesis and Characterization of Ionic liquid and Ionic Solid Hydrates
Allan Cardenas, SUNY College at Fredonia
CHEM 481 is an advanced synthesis course focuses from synthetic design up to the full characterization of products including optimization. Students enrolled in this class are usually juniors and seniors who already taken organic and analytical laboratory classes. This CURE course will give student to design and perform the synthesis of novel ionic liquid; perform a full spectroscopic analysis of the products; optimize and scale up chemical reactions; provide molecular modifications if needed. This CURE train students to use chemical analysis instruments and introduce them to other capabilities of an instrument which is not usually discussed in regular undergraduate courses.

Discipline: Chemistry:Inorganic Chemistry, Chemistry, Organic Chemistry
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations, Developing and using models, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Basic Research
State: New York
Target Audience: Upper Division, Major, Non-major
CURE Duration: A full term

Secondary Data Analysis to Explore Health Equity in a Psychological Framework
Anna Lee, North Carolina A & T State University
This class will provide students with the opportunity to conduct a research project to examine psycho-social factors related to health equity in North Carolina communities. Students will work in small groups to pose a novel question, analyze data using a publicly available dataset. and report findings. Over arching course goals are to write a complete APA formatted research report, to conduct a secondary data analysis, and to present findings.

Discipline: Social Sciences, Psychology
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: North Carolina
Target Audience: Non-major, Major
CURE Duration: A full term

Emerging Contaminants in Arizona
Frank Marfai, Phoenix College

Discipline: Environmental Science:Air Quality, Water Quality and Quantity, Waste, Statistics, Environmental Science
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data, Using mathematics and computational thinking, Developing and using models
Nature of Research: Basic Research, Applied Research
State: Arizona
Target Audience: Introductory, Upper Division, Non-major, Major
CURE Duration: Multiple terms, A full term

General Chemistry II Water Quality labs at Adams State University
Christina Miller, Adams State University; Christopher Adams, Adams State University; Umesh Bhattarai, Adams State University
Adams State is conducting CURES in many of our lower divisional Biology, Chemistry, Geology and Math courses to increase the number and diversity of students who participate in undergraduate research. In General Chemistry II lab we will be replacing our normal labs concerning titration pH and ion solubility with CURES concerning water quality. These water samples will come from surrounding areas that have either been grazed or ungrazed to find out if there are differences in water quality between them. We will be using ion-specific probes to determine the presence and concentration of specific ions in the water samples. We will be using pH probes and titration to determine the acid concentration in water samples.

Discipline: Chemistry, Environmental Chemistry, Analytical Chemistry
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Wet Lab/Bench Research, Basic Research, Field Research
State: Colorado
Target Audience: Non-major, Introductory, Major
CURE Duration: A few class periods

Genes to Ecosystems
Laci Gerhart-Barley, University of California-Davis

Discipline: Environmental Science:Soils and Agriculture, Ecosystems, Land Use and Planning, Geoscience:Soils, Life Sciences:Genetics, Ecology
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
Nature of Research: Wet Lab/Bench Research, Field Research, Basic Research
State: California
Target Audience: Non-major, Introductory, Major
CURE Duration: A full term