CURE Examples



Current Search Limits:
Developing and using models
Wet Lab/Bench Research

Results 1 - 3 of 3 matches

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms

BIOL 189T Fungal Biology
Alija Mujic, California State University-Fresno
The diversity, community structure, and functional diversity of fungi in the high Sierra is understudied and is largely unknown from the Sierra Nevada foothills. Through use of direct field sampling I will engage BIOL189T students in sampling efforts to elucidate the fungal biology of these understudied habitats. Students will sample fungal sporocarps (mushrooms) from existing field plots established by the National Environmental Observation Network (NEON) and use morphological identification techniques and DNA barcoding methods to identify the fungal diversity in these habitats. Future iterations of the course will likely focus upon selected fungal taxa identified in previous iterations of the course to investigate the phenology and ecological interactions of the fungal community in these habitats in NEON plots.

Discipline: Environmental Science:Human Population, Sustainability, Land Use and Planning, Global Change and Climate, Forest Resources, Life Sciences:Molecular Biology, Microbiology, Anatomy and Physiology, Ecology, Environmental Science, Ecosystems, Life Sciences:Genetics, Life Sciences, Evolution
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data, Developing and using models, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Field Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term

Yeast, metabolism and suicide: a brewing introduction to biochemical research
Laurent Dejean, California State University-Fresno
This course provides the student with a range of techniques and methodology appropriate to the study or phenomena at the biochemical, cellular, and organismic levels. In the spirit of genuine undergraduate research (CURE), the students will be involved directly in research that is ongoing in the Dejean's lab, i.e. the study of the mechanisms used by Bcl-2 family proteins to cross-regulate cell death and energy metabolism. The students' involvement in this type of research will be following a set of preliminary experiments which are aimed at familiarizing the students with common biochemistry lab skills; and with the manipulation of the yeast Saccharomyces cerevisiae which is to be used as the main model system in their research. Finally, the students will also engage directly with primary literature sources in preparation of their lab reports and an eventual presentation of their research at the Fresno State CURE symposium at the end of the semester.

Discipline: Chemistry:Biochemistry, Life Sciences:Cell Biology, Microbiology, Molecular Biology
Core Competencies: Analyzing and interpreting data, Developing and using models, Planning and carrying out investigations
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Major, Upper Division