CURE Examples



Current Search Limits:
Informatics/Computational Research

Results 1 - 6 of 6 matches

Using R to Build Powerful Predictive Models for Kaggle Competitions
Earvin Balderama, California State University-Fresno

Discipline: Statistics, Computer Science
Core Competencies: Using mathematics and computational thinking, Analyzing and interpreting data, Developing and using models
Nature of Research: Informatics/Computational Research, Applied Research
State: California
Target Audience: Non-major, Major, Upper Division
CURE Duration: A full term

Brain Mapping of Psychiatric Disorders
Chris Miller, California State University-Fresno
This course will introduce students to the neuroscience of psychiatric disorders by guiding them through the process of conducting a meta-analysis of fMRI studies of a particular psychiatric disorder of their choice.

Discipline: Social Sciences:Psychology, Statistics, Computer Science, Health Sciences, Life Sciences:Anatomy and Physiology
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Using mathematics and computational thinking
Nature of Research: Informatics/Computational Research
State: California
Target Audience: Major
CURE Duration: A full term, Multiple terms

Going from big genomics data, to useful data, to experiments in diabetes
Talitha Van der Meulen, University of California-Davis
In diabetes, blood glucose levels are too high and people with diabetes suffer from severe side-effects that include cardiovascular disease, renal failure and blindness. Our lab is interested in studying the different cell types in the pancreatic islet that together regulate blood glucose levels. Our ultimate goal is to understand how human islet cells function and change in health and diabetes and then use this knowledge to contribute to a cure for or treatment of diabetes. In this CURE, students will become familiar with using so-called "omics" data and translating the data into a testable experiment that they will perform. The experiments will be done in the context of diabetes research that is ongoing in the Huising lab at UC Davis. Currently, we have large sets of information about gene expression at the mRNA level in healthy alpha, beta, and delta cells of the mouse pancreatic islet. Students will use bioinformatics techniques to process these sets and compare expression among these cell types during the first half of the course. For the second half, they will use this comparison to select a gene whose expression they will verify at the protein level in mouse pancreatic islets using fluorescent staining of tissue slices, followed by imaging and image-quantification. This process is a first step towards our ultimate goal of studying human islet cells. Once we have tools verified in mouse tissue, we can then apply these to human tissues. Therefore, we ask students to present their validation to the Huising lab.

Discipline: Life Sciences, Health Sciences, Life Sciences:Cell Biology
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: California
CURE Duration: A full term

Beyond the acronym: Employing data science to improve engagement in STEM
Pamela Reynolds, University of California-Davis
Forbes magazine ranked UC Davis as the "best value college for women in STEM." Let's investigate why, together! In this hands-on Course-based Undergraduate Research Experience (CURE), you will leverage computational tools and methodologies to explore, analyze and design solutions to maximize discoverability and engagement with STEM offerings right here at UC Davis. Community-based tools like the UC Davis STEM portal help students and members of the broader community discover and connect with opportunities in science, technology, engineering and math. How do we define STEM, and how do people interface with the diversity of offerings at our university? Through this seminar you will learn about web scraping, text mining, natural language processing, and user interface design as you work on projects to optimize search functionality and increase content management automation for the Portal, which serves as a single point of entry for catalogued information related to STEM initiatives, clubs, programs and events on campus. This research will be used to improve the discoverability and accessibility of our university's resources, and identify new opportunities for multidisciplinary research and engagement with STEM. The data we collect and workflows designed in this class will contribute to research in the digital humanities and philosophy of science regarding the shape of the discourse surrounding STEM in academia. It will also have a direct application in helping our students and broader community discover new resources and opportunities. Students will be required to work both individually and collaboratively in groups, and to share their learning with each other. This class is open to first-year freshman and transfer students from all majors. You do not need to be a computer scientist to be successful in this course, but you should be comfortable using a computer and have prior exposure to programming (R, Python, etc.). Your instructor team is looking forward to supporting your learning and engagement with research in this class!

Discipline: Computer Science, Social Sciences:Sociology, Statistics
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Informatics/Computational Research
State: California
Target Audience: Introductory, Major, Non-major
CURE Duration: A full term

Animal Genome to Phenome - A CURE for food security
Mulumebet Worku, North Carolina A & T State University

Discipline: Chemistry:Biochemistry, Life Sciences:Cell Biology, Genetics, Life Sciences, Molecular Biology
Core Competencies: Developing and using models, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Using mathematics and computational thinking
Nature of Research: Informatics/Computational Research, Basic Research, Applied Research
State: North Carolina
Target Audience: Major, Introductory
CURE Duration: Multiple terms

Introduction to GIS using CURE
Elizabeth Bollen, Adams State University; Chayan Lahiri, Adams State University
Geographic information systems (GIS) are used in many capacities across every discipline to help communities, governments, and businesses make informed decisions. This Introduction to GIS CURE course aims to assist local ranches by locating sampling sites for watershed analyses. Students in this GIS course will develop skills manipulating data by learning GIS software. The students themselves are tasked with identifying sampling site criteria for the broader study, which will assist other student researchers in locating scientifically viable, safe, and accessible sampling sites for watershed sample collection. Students in this course will also use knowledge gained in prior classes to make and defend decisions. Written reports, figure drafting, and group discussions will help students learn how to clearly and effectively communicate their findings and results. The knowledge and skills students' gain in this course will be used in future classes and are highly sought after by employers.

Discipline: Geoscience:Geology, Biogeosciences, Environmental Science:Land Use and Planning, Soils and Agriculture, Geoscience:Hydrology, Soils, Computer Science, Social Sciences, Life Sciences, Environmental Science:Ecosystems, Water Quality and Quantity
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Applied Research, Informatics/Computational Research
State: Colorado
Target Audience: Major, Non-major, Introductory
CURE Duration: Multiple terms, A full term