CURE Examples



Current Search Limits:
Basic Research
A full term

Results 1 - 10 of 18 matches

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms

Random gene mutagenesis for gene identification linked to prodigiosin production in Serratia marcescens
Verena Carvalho, University of Massachusetts-Amherst
This lab course is designed to provide course-based undergraduate research experiences. You will learn how to prepare, execute, and interpret your own experiments. While all of you will conduct the same techniques in the course, each of you will create their own sets of mutant strains and study different features of your bacterium. We will study Serratia marcescens, an opportunistic, nosocomial pathogen, and is particularly linked to catheter-associated bacteremia, urinary tract infections, and wound infections. It is responsible for 1.4% of hospital-acquired infection cases in the United States. These bacteria are commonly found in the respiratory and urinary tracts of hospitalized adults, and in the gastrointestinal systems of children. Many strains of S. marcescens have a bright red colony color (a tripyrrole pigment called prodigiosin), while pigment production is often temperature-dependent. Prodigiosin is a secondary metabolite, and its expression is thought to be related to phosphate limitation. It was also identified as a natural bioactive substance with high potential for antibiotic and anti-cancer applications. It currently receives renewed attention for its wide range of potential applications, including activities as antimalarial, antifungal, immunosuppressant, and antibiotic agents. It is also prominently known for its capacity to trigger apoptosis of malignant cancer cells, and high activity against stationary phase Borrelia burgdorferi, the causative agent of Lyme disease, has been demonstrated. Given its diverse effects, the exact mechanisms are currently not elucidated, and may be highly complex, including phosphatase inhibition, copper mediated cleavage of double stranded DNA, or disrupting the pH gradient through transmembrane transport of H+ and Cl- ions. Clearly, prodigiosin is a highly promising drug candidate, and is currently in preclinical phase study for pancreatic cancer treatment. In this course, we will use the transposon Tn5 to generate random mutations in the chromosome of Serratia marcescens. The transposon will be provided by a plasmid hosted in a donor E. coli strain, and transferred into your test bacterium via conjugation. We will then first select for successfully transposed mutants by testing for antibiotic resistance, and screen for your mutants that are altered in their pigment production. To identify the gene where the mutation has happened, we will remove the chromosomal DNA from the mutant strains, perform restriction enzyme digest, and generate self-circulating DNA. These plasmids are transformed into an E. coli strain that can replicate the fragment of genomic DNA that contains the transposon, and we can sequence the insertion site with the transposon DNA as anchor. In summary, in this course you will gain hands-on experience with modern genetic and biotechnological techniques, you will gain insights into bioinformatics and into working with public databases, which are all essential skills in modern microbiological research.

Discipline: Life Sciences:Microbiology
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Basic Research, Wet Lab/Bench Research
State: Massachusetts
Target Audience: Upper Division, Major
CURE Duration: A full term

BIOL 189T Fungal Biology
Alija Mujic, California State University-Fresno
The diversity, community structure, and functional diversity of fungi in the high Sierra is understudied and is largely unknown from the Sierra Nevada foothills. Through use of direct field sampling I will engage BIOL189T students in sampling efforts to elucidate the fungal biology of these understudied habitats. Students will sample fungal sporocarps (mushrooms) from existing field plots established by the National Environmental Observation Network (NEON) and use morphological identification techniques and DNA barcoding methods to identify the fungal diversity in these habitats. Future iterations of the course will likely focus upon selected fungal taxa identified in previous iterations of the course to investigate the phenology and ecological interactions of the fungal community in these habitats in NEON plots.

Discipline: Environmental Science:Human Population, Sustainability, Land Use and Planning, Global Change and Climate, Forest Resources, Life Sciences:Molecular Biology, Microbiology, Anatomy and Physiology, Ecology, Environmental Science, Ecosystems, Life Sciences:Genetics, Life Sciences, Evolution
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data, Developing and using models, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Field Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term

Designing Authentic Undergraduate Experiences in Research (DAUER)
Joseph Ross, California State University-Fresno
In this research experience, students will learn about how inheritance of diverse genetic material from their parents can impact the health (fecundity) of offspring. Students will design experiments to mate pairs of populations from a diverse global collection of microscopic worms and measure and compare the fecundities of their hybrid offspring.

Discipline: Life Sciences:Genetics, Evolution, Life Sciences, Molecular Biology
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term

Race & Incarceration in The USA Overtime: Analysis of Trends & Forecast
Shyamal Das, Elizabeth City State University
The course in Race and Ethnic Relations examines the evolving nature of America's social and cultural diversity in terms of different race and ethnic groups (Whites, Blacks, Hispanics, Asian-Americans, and American-Indians), and the issues of racial prejudice, hatred, and discrimination in the country. In so doing, students complete the final paper based on research on the relationship between race and incarceration. The research utilizes arrest data from the Bureau of Justice Statistics website. Students derive the research questions and corresponding hypotheses based on their review of literature. Based on their data analysis, they attempt to explain or interpret the arrest data on the relationship between race and the arrest rates by types of crimes. There two steps: (1) individuals complete data gathering and analysis as well as interpretation in the first place; and (2) groups will be formed by at least three students in each. The groups will prepare the final group paper and present the findings in the class. The current assignment illustrates on the Step 1 of the final project. Each student will select an assigned crime type (see the Assignment Topics) from the Bureau of Justice Statistics database, and run the graphs to show the trends by race. Assess whether students can explain the arrest rates by race. Then each student runs another analysis to forecast the arrest rates for the coming ten to fifteen years. The final group outcomes will be presented in the class. The proposed CURE incorporates a STEM component into social science as students run forecasting models for an important social problem in the USA.

Discipline: Social Sciences:Sociology, Statistics
Nature of Research: Basic Research
Target Audience: Upper Division, Non-major, Major
CURE Duration: A full term

Research in Agriculture
Chantel Simpson, North Carolina A & T State University; Chastity Warren English, North Carolina A & T State University
Explores research methods in agriculture including observational, correlational, survey and experimental methods. Uses the scientific method in the design, execution, analysis, and communication of agricultural investigations. Discusses the ethics of research, and evaluation methods. Students will be offered the opportunity to conduct agricultural studies using a variety of methods.

Discipline: Social Sciences, Education
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research
State: North Carolina
Target Audience: Introductory
CURE Duration: A full term

Synthesis and Characterization of Ionic liquid and Ionic Solid Hydrates
Allan Cardenas, SUNY College at Fredonia
CHEM 481 is an advanced synthesis course focuses from synthetic design up to the full characterization of products including optimization. Students enrolled in this class are usually juniors and seniors who already taken organic and analytical laboratory classes. This CURE course will give student to design and perform the synthesis of novel ionic liquid; perform a full spectroscopic analysis of the products; optimize and scale up chemical reactions; provide molecular modifications if needed. This CURE train students to use chemical analysis instruments and introduce them to other capabilities of an instrument which is not usually discussed in regular undergraduate courses.

Discipline: Chemistry:Inorganic Chemistry, Chemistry, Organic Chemistry
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations, Developing and using models, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Basic Research
State: New York
Target Audience: Upper Division, Major, Non-major
CURE Duration: A full term

Mutant Frogs, Hormones, & Genes: Using gene editing to investigate the molecular basis for hormone regulated development
Carla Fresquez, University of California-Davis
Students will investigate a most remarkable example of hormone action in nature: amphibian metamorphosis. They'll observe development of our model, Xenopus laevis, from fertilized egg to swimming tadpole, at which point they can simply add thyroid hormone to induced early metamorphosis. In this iteration of the CURE, students will characterize TALEN induced thyroid hormone receptor mutant lines, including the development of simple and reproducible PCR screening methods for genotyping the large numbers of embryos that result from mating in Xenopus, an advantage of the system if rapid genotyping can be developed. At the conclusion of the CURE, students will appreciate the amphibian life cycle and how the same hormone can cause drastically different cellular, tissue, and organ changes. They will also contribute directly to research on the role of different receptors in mediating those changes, specifically developing rapid PCR screening methods to identify tadpoles with genome editing induced mutations in specific receptor types.

Discipline: Life Sciences:Cell Biology, Anatomy and Physiology, Evolution, Zoology, Molecular Biology, Genetics
Nature of Research: Wet Lab/Bench Research, Basic Research
State: California
Target Audience: Introductory
CURE Duration: A full term

Secondary Data Analysis to Explore Health Equity in a Psychological Framework
Anna Lee, North Carolina A & T State University
This class will provide students with the opportunity to conduct a research project to examine psycho-social factors related to health equity in North Carolina communities. Students will work in small groups to pose a novel question, analyze data using a publicly available dataset. and report findings. Over arching course goals are to write a complete APA formatted research report, to conduct a secondary data analysis, and to present findings.

Discipline: Social Sciences, Psychology
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: North Carolina
Target Audience: Non-major, Major
CURE Duration: A full term

Genetic Engineering of Zebrafish to Investigate Tumorigenicity of Cancer Mutations
Terry Shackleford, St. Marys University

Discipline: Life Sciences, Cell Biology
Core Competencies: Asking questions (for science) and defining problems (for engineering), Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research
State: Texas
Target Audience: Major
CURE Duration: A full term