CURE Examples
Discipline
Core Competencies Show all
Using mathematics and computational thinking
11 matchesNature of Research Show all
Basic Research
11 matchesResults 1 - 10 of 11 matches
Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms
Laser spectroscopy of atmospherically relevant molecules and clusters in helium nanodroplets
Paul Raston, James Madison University
Superfluid helium nanodroplets present an ideal medium for the study of chemical dynamics at the molecular level. Their low temperature, enormous heat conductivity, and weakly interacting nature allow for the investigation of various things, such as how molecular rotation is effected by a solvent, and how molecules interact with each other. These two topics will be addressed in the lab by (1) measuring the spectra of unexplored molecules in helium nanodroplets and determining their rotational constants; this data will then be used to test known models describing the interaction between the molecule and helium solvent, and (2) synthesizing and characterizing unexplored molecular clusters in an effort to better understand molecular solvation; students will solvate the "unexplored molecule" with an atmospherically relevant species (O2, N2, H2O), and investigate the resulting clusters with laser Stark spectroscopy.
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Developing and using models, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: Virginia
Target Audience: Upper Division, Non-major, Major
CURE Duration: A few class periods, Multiple terms
Designing Authentic Undergraduate Experiences in Research (DAUER)
Joseph Ross, California State University-Fresno
In this research experience, students will learn about how inheritance of diverse genetic material from their parents can impact the health (fecundity) of offspring. Students will design experiments to mate pairs of populations from a diverse global collection of microscopic worms and measure and compare the fecundities of their hybrid offspring.
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Upper Division, Major
CURE Duration: A full term
Emerging Contaminants in Arizona
Frank Marfai, Phoenix College
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data, Using mathematics and computational thinking, Developing and using models
Nature of Research: Basic Research, Applied Research
State: Arizona
Target Audience: Introductory, Upper Division, Non-major, Major
CURE Duration: Multiple terms, A full term
Kinetics of bioorthogonal reactions
Jen Heemstra, Emory University
Bioorthogonal reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels–Alder (IEDDA) are widely used for labeling of biomolecules, which in turn enables numerous applications in basic science and biotechnology. The key characteristic of these reactions is the ability of the functional groups involved to react with each other while remaining inert to the other functional groups found in nature. Despite the wide use of these chemistries, relatively few studies have evaluated the effect of reaction conditions on the kinetics of the reaction, and it would be of value to the scientific community to know how factors such as buffer identity, pH, ionic strength, and temperature impact reaction rate. In this CURE, students synthesize reagents or biomolecules and utilize UV spectrophotometry to measure the reaction rate under varying conditions. Students communicate their results in a final report written in the format of a peer-reviewed publication, and this CURE has yielded peer-reviewed research publications to share the data with the scientific community.
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Georgia
Target Audience: Major, Upper Division
CURE Duration: A full term
Going from big genomics data, to useful data, to experiments in diabetes
Talitha Van der Meulen, University of California-Davis
In diabetes, blood glucose levels are too high and people with diabetes suffer from severe side-effects that include cardiovascular disease, renal failure and blindness. Our lab is interested in studying the different cell types in the pancreatic islet that together regulate blood glucose levels. Our ultimate goal is to understand how human islet cells function and change in health and diabetes and then use this knowledge to contribute to a cure for or treatment of diabetes. In this CURE, students will become familiar with using so-called "omics" data and translating the data into a testable experiment that they will perform. The experiments will be done in the context of diabetes research that is ongoing in the Huising lab at UC Davis. Currently, we have large sets of information about gene expression at the mRNA level in healthy alpha, beta, and delta cells of the mouse pancreatic islet. Students will use bioinformatics techniques to process these sets and compare expression among these cell types during the first half of the course. For the second half, they will use this comparison to select a gene whose expression they will verify at the protein level in mouse pancreatic islets using fluorescent staining of tissue slices, followed by imaging and image-quantification. This process is a first step towards our ultimate goal of studying human islet cells. Once we have tools verified in mouse tissue, we can then apply these to human tissues. Therefore, we ask students to present their validation to the Huising lab.
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: California
CURE Duration: A full term
Understanding Noncovalent Interactions and Binding through PRRSM
Amanda Hargrove, Duke University
This CURE was designed to increase instruction on noncovalent interactions and intermolecular forces, provide laboratory experiences in biochemistry and chemical biology, and deliver a more consistent chemistry research experience to undergraduates at Duke University while staying within the existing curriculum. First, the concept of noncovalent interactions is visualized in an applied setting by examining 3D structures of small molecule:RNA interactions through a portable virtual reality (VR) environment. Next, using knowledge gained in the Hargrove lab regarding small molecule:RNA interactions along with the literature examples, teams of students evaluate known small molecule:RNA interactions, pose original scientific questions, and design a hypothesis-driven experiment that can be readily tested with commercially available materials using a standard fluorimeter or plate reader. These experiments directly contribute to research that examines patterns in the recognition of RNA structure by small molecules, and the students are able to assess their contribution to this ongoing interdisciplinary project.
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: North Carolina
Target Audience: Major, Upper Division
CURE Duration: Half a term
Introducing hands on concepts of Mammalian Cell Culture and in vitro drug studies in Undergraduate course shells.
HIRENDRA BANERJEE, Elizabeth City State University
The process of learning is both visual and auditory and in the STEM fields, hands on and practicums enhances student learning, retention and understanding of the complex scientific concepts than just memorizing facts from class room lectures. Thus we plan to implement short hands on research modules in our Cell Biology and Human Physiology courses involving projects teaching students with mammalian cell culture techniques and in vitro drug testing skills. Students will learn to culture mammalian cancer cell lines with culture mediums and maintain the cultures in carbon dioxide incubators at ideal temperature, they will then treat them with novel anti cancer compounds to test the efficacy of these drugs and the IC50 doses(dose at which 50% cells dies).The data obtained will be statistically analyzed and results reviewed to study whether it aligns with the hypothesis and specific aims; students will then present their findings in a small research paper and short seminars in class along with their peers, they will be graded according to a rubric that will be provided to them in the beginning of the research experience process. Thus this process will align with CURE objectives of REU incorporation in undergraduate courses.
Core Competencies: Constructing explanations (for science) and designing solutions (for engineering), Using mathematics and computational thinking, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: North Carolina
Target Audience: Major
CURE Duration: A full term
Visualizing protein aggregates involved in human disease
Whitney Duim, University of California-Davis
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Using mathematics and computational thinking
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Introductory
CURE Duration: A full term
Animal Genome to Phenome - A CURE for food security
Mulumebet Worku, North Carolina A & T State University
Core Competencies: Developing and using models, Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Using mathematics and computational thinking
Nature of Research: Informatics/Computational Research, Basic Research, Applied Research
State: North Carolina
Target Audience: Major, Introductory
CURE Duration: Multiple terms