CURE Examples



Current Search Limits:
Planning and carrying out investigations
Introductory

Results 1 - 10 of 11 matches

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms

Water in Gen Chem
Ruthanne Paradise, University of Massachusetts-Amherst

Discipline: Chemistry:Environmental Chemistry, Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Chemistry:Analytical Chemistry
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Applied Research
State: Massachusetts
Target Audience: Introductory, Non-major, Major
CURE Duration: A full term

Redesign of BIOL 1A Lab
Tricia Van Laar, California State University-Fresno

Discipline: Life Sciences
Core Competencies: Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
State: California
Target Audience: Major, Introductory
CURE Duration: Half a term

Polymer/Materials Structure-Property Relationship Investigations for General Chemistry Students
Zuleikha Kurji, Saint Marys College of California

Discipline: Chemistry, Organic Chemistry, Physical Chemistry
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Wet Lab/Bench Research, Applied Research
State: California
Target Audience: Introductory, Non-major, Major
CURE Duration: A few class periods, Half a term

General Chemistry II Water Quality labs at Adams State University
Christina Miller, Adams State University; Christopher Adams, Adams State University; Umesh Bhattarai, Adams State University
Adams State is conducting CURES in many of our lower divisional Biology, Chemistry, Geology and Math courses to increase the number and diversity of students who participate in undergraduate research. In General Chemistry II lab we will be replacing our normal labs concerning titration pH and ion solubility with CURES concerning water quality. These water samples will come from surrounding areas that have either been grazed or ungrazed to find out if there are differences in water quality between them. We will be using ion-specific probes to determine the presence and concentration of specific ions in the water samples. We will be using pH probes and titration to determine the acid concentration in water samples.

Discipline: Chemistry, Environmental Chemistry, Analytical Chemistry
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Wet Lab/Bench Research, Basic Research, Field Research
State: Colorado
Target Audience: Non-major, Introductory, Major
CURE Duration: A few class periods

Research in Agriculture
Chantel Simpson, North Carolina A & T State University; Chastity Warren English, North Carolina A & T State University
Explores research methods in agriculture including observational, correlational, survey and experimental methods. Uses the scientific method in the design, execution, analysis, and communication of agricultural investigations. Discusses the ethics of research, and evaluation methods. Students will be offered the opportunity to conduct agricultural studies using a variety of methods.

Discipline: Social Sciences, Education
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research
State: North Carolina
Target Audience: Introductory
CURE Duration: A full term

What's in your water?
Robin Cotter, Phoenix College
Water quality is an issue that impacts everyone, but do we really know what is in the water we drink? Water quality is an issue that impacts everyone, but do we really know what is the water we drink? Chemical and bacteriological contamination of water has serious implications for human health. For example, in agricultural areas, pesticides and fertilizers can lead to contamination of groundwater. High levels of nitrate can lead to methaemoglobinaemia (blue baby syndrome). Solvents and heavy metals generated during mining can lead to toxicosis. As witnessed in Flint, Michigan, the use of lead pipes in plumbing can lead to elevated levels of lead in drinking water which can impact the mental development in children. Perfluorooctanoic acid (PFOA or C8) is a man-made chemical used in the process of making Teflon. PFOA's pose global health concerns as they persist in the environment and human body for extended periods of time and can now be detected in almost everyone's blood. To address this issue, introductory biology, microbiology and chemistry students at our 2-year community college will work together to test water from local water treatment plants for the presence of chemical and biological contaminants. Students will learn about the scientific process as they perform background research on EPA water standards, potential sources of water contaminants, and the water treatment process. Students will hold virtual meetings with community, university, and industry partners to identify relevant research questions related to water treatment. Students will then do a site visit to a local water treatment plant where they will collect and analyze water samples from different stages of the water treatment process. Students will test the water samples for the presence of organic pollutants and microbial pathogens. This data will be entered into a regional database and compared to water quality reports posted on the Arizona Department of Environmental Quality (ADEQ) website. Students will then present their findings at community meetings, STEM outreach events, and via virtual poster sessions.

Discipline: Chemistry, Analytical Chemistry, Environmental Science:Water Quality and Quantity, Environmental Science, Life Sciences, Microbiology, Chemistry:Organic Chemistry
Core Competencies: Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Target Audience: Introductory, Upper Division, Major
CURE Duration: Half a term

Synthesis and Analysis of Carbohydrate-based hydrogels
Rebecca Connor, Dickinson College
This CURE has been developed for first-year general chemistry students with a strong background in chemistry who have elected to take an accelerated one-semester general chemistry course. In this CURE, students will have the opportunity to study controlled drug release from carbohydrate-based hydrogels or protein purification using carbohydrate based hydrogels. After learning some basic lab skills and developing their ability to read the primary literature, the students will use what they have learned to design a new synthesis of a carbohydrate-based hydrogel. They will evaluate their hydrogels for mechanical properties and ability to absorb and release model drugs. After their first set of experiments, the class will meet in a "group-meeting" and they will present and discuss their in-progress data. The students will then propose their next set of experiments and perform them. They will write a formal report at the end of the semester detailing their methods used, results generated, and a comparison of their results to the published literature.

Discipline: Chemistry
Core Competencies: Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Pennsylvania
Target Audience: Introductory
CURE Duration: A full term

Visualizing protein aggregates involved in human disease
Whitney Duim, University of California-Davis

Discipline: Chemistry:Physical Chemistry, Chemistry, Life Sciences:Cell Biology, Physics:Optics, Chemistry:Biochemistry
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Using mathematics and computational thinking
Nature of Research: Basic Research, Wet Lab/Bench Research
State: California
Target Audience: Introductory
CURE Duration: A full term

Beyond the acronym: Employing data science to improve engagement in STEM
Pamela Reynolds, University of California-Davis
Forbes magazine ranked UC Davis as the "best value college for women in STEM." Let's investigate why, together! In this hands-on Course-based Undergraduate Research Experience (CURE), you will leverage computational tools and methodologies to explore, analyze and design solutions to maximize discoverability and engagement with STEM offerings right here at UC Davis. Community-based tools like the UC Davis STEM portal help students and members of the broader community discover and connect with opportunities in science, technology, engineering and math. How do we define STEM, and how do people interface with the diversity of offerings at our university? Through this seminar you will learn about web scraping, text mining, natural language processing, and user interface design as you work on projects to optimize search functionality and increase content management automation for the Portal, which serves as a single point of entry for catalogued information related to STEM initiatives, clubs, programs and events on campus. This research will be used to improve the discoverability and accessibility of our university's resources, and identify new opportunities for multidisciplinary research and engagement with STEM. The data we collect and workflows designed in this class will contribute to research in the digital humanities and philosophy of science regarding the shape of the discourse surrounding STEM in academia. It will also have a direct application in helping our students and broader community discover new resources and opportunities. Students will be required to work both individually and collaboratively in groups, and to share their learning with each other. This class is open to first-year freshman and transfer students from all majors. You do not need to be a computer scientist to be successful in this course, but you should be comfortable using a computer and have prior exposure to programming (R, Python, etc.). Your instructor team is looking forward to supporting your learning and engagement with research in this class!

Discipline: Computer Science, Social Sciences:Sociology, Statistics
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Informatics/Computational Research
State: California
Target Audience: Introductory, Major, Non-major
CURE Duration: A full term