CURE Examples



Current Search Limits:
Health Sciences
California

Results 1 - 2 of 2 matches

Brain Mapping of Psychiatric Disorders
Chris Miller, California State University-Fresno
This course will introduce students to the neuroscience of psychiatric disorders by guiding them through the process of conducting a meta-analysis of fMRI studies of a particular psychiatric disorder of their choice.

Discipline: Social Sciences:Psychology, Statistics, Computer Science, Health Sciences, Life Sciences:Anatomy and Physiology
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering), Using mathematics and computational thinking
Nature of Research: Informatics/Computational Research
State: California
Target Audience: Major
CURE Duration: A full term, Multiple terms

Going from big genomics data, to useful data, to experiments in diabetes
Talitha Van der Meulen, University of California-Davis
In diabetes, blood glucose levels are too high and people with diabetes suffer from severe side-effects that include cardiovascular disease, renal failure and blindness. Our lab is interested in studying the different cell types in the pancreatic islet that together regulate blood glucose levels. Our ultimate goal is to understand how human islet cells function and change in health and diabetes and then use this knowledge to contribute to a cure for or treatment of diabetes. In this CURE, students will become familiar with using so-called "omics" data and translating the data into a testable experiment that they will perform. The experiments will be done in the context of diabetes research that is ongoing in the Huising lab at UC Davis. Currently, we have large sets of information about gene expression at the mRNA level in healthy alpha, beta, and delta cells of the mouse pancreatic islet. Students will use bioinformatics techniques to process these sets and compare expression among these cell types during the first half of the course. For the second half, they will use this comparison to select a gene whose expression they will verify at the protein level in mouse pancreatic islets using fluorescent staining of tissue slices, followed by imaging and image-quantification. This process is a first step towards our ultimate goal of studying human islet cells. Once we have tools verified in mouse tissue, we can then apply these to human tissues. Therefore, we ask students to present their validation to the Huising lab.

Discipline: Life Sciences, Health Sciences, Life Sciences:Cell Biology
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: California
CURE Duration: A full term