Educational Materials Collection
Welcome to the EarthScope ANGLE educational materials collection! To get started, type a keyword into the search bar or refine your search using the boxes on the right.
Resource Type
Grade Level Show all
Informal
10 matchesSubject
EarthScope Geophysics Data: Data
Special Interest
Quantitative Skills
Results 1 - 10 of 10 matches
Measure a Changing Volcano
EarthScope Consortium
This hands-on demonstration illustrates how GPS can be used to measure the inflation and deflation of a volcano. Volcanoes may inflate when magma rises closer to the surface and deflate when the pressure dissipates or after an eruption.
Grade Level: General Public, Informal, Middle (6-8), High School (9-12), Intermediate (3-5)
Subject: Natural Hazards:Volcanism, Geodesy, Geoscience
Special Interest: Quantitative, Data, models, or simulations, Hazards
Quantitative Skills: Gathering Data
Seismic Slinky: Modeling P and S waves
IRIS (Incorporated Research Institutions for Seismology)
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
Grade Level: General Public, Informal, High School (9-12), College Lower (13-14), Intermediate (3-5), Middle (6-8)
Subject: Geoscience, Seismology, Natural Hazards:Earthquakes
Special Interest: Data, models, or simulations, Hazards
Learn more about this review process.
Fault Models for Teaching About Plate Tectonics
Modified from an activity by Larry Braile (Purdue University) by TOTLE (Teachers on the Leading Edge) Project and further improved by ShakeAlert.
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.
Grade Level: General Public, Informal, Intermediate (3-5), High School (9-12), Middle (6-8)
Subject: Natural Hazards:Earthquakes, Tectonics, Geoscience
Special Interest: Data, models, or simulations, Hazards
Learn more about this review process.
Human Wave: Modeling P and S Waves
IRIS (Incorporated Research Institutions for Seismology) and ShakeAlert
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
Grade Level: Informal, College Lower (13-14), General Public, High School (9-12), Intermediate (3-5), Middle (6-8)
Subject: Geoscience, Natural Hazards:Earthquakes, Seismology
Special Interest: Quantitative, Data, models, or simulations, Hazards
Quantitative Skills: Graphs, Gathering Data, Arithmetic/Computation
Learn more about this review process.
Earthquake Hazard Maps & Liquefaction: Alaska emphasis
TOTLE (Teachers on the Leading Edge), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), EarthScope ANGLE, and ShakeAlert projects
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.
Grade Level: Informal, Middle (6-8), Intermediate (3-5), General Public, High School (9-12)
Subject: Natural Hazards:Earthquakes, Mass Wasting, Natural Hazards, Engineering, Geoscience, Seismology
Special Interest: Hazards, Data, models, or simulations
Learn more about this review process.
Rocks are Elastic!! Seeing is Believing
IRIS (Incorporated Research Institutions for Seismology)
This activity helps learners see the elastic properties of rocks by actually bending marble. How rocks respond to stress is a fundamental concept, critical to forming explanatory models in the geosciences (e.g., elastic rebound theory). Whereas learners are likely to have lots of experience with rocks, few will have directly experienced them behaving elastically. As a result of this "missed experience", most learners conceptualize rocks as rigid solids; a concept which generally serves students well in everyday life but impedes learning about particular geologic concepts.
Grade Level: General Public, Informal, Middle (6-8), Intermediate (3-5), High School (9-12)
Subject: Natural Hazards:Earthquakes, Seismology, Geoscience
Special Interest: Hazards
Learn more about this review process.
Be Smart, Be Prepared! Planning an Emergency Backpack
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
Participants learn what to do before, during, and after a potentially damaging earthquake. They brainstorm valuable components for an emergency supplies backpack and then present on their ideas. The primary resource is the booklet Are you prepared for the next big EARTHQUAKE in Alaska?
Grade Level: Informal, Middle (6-8), Intermediate (3-5), General Public, High School (9-12), College Lower (13-14)
Subject: Natural Hazards:Tsunami, Volcanism, Mitigation and Preparedness, Earthquakes
Special Interest: Hazards
Build a Better Wall
FEMA (Federal Emergency Management Administration) and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program). Improvements by ShakeAlert.
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.
Grade Level: General Public, High School (9-12), College Lower (13-14), Informal, Intermediate (3-5), Middle (6-8)
Subject: Natural Hazards:Earthquakes, Natural Hazards, Geoscience, Natural Hazards:Mitigation and Preparedness, Engineering
Special Interest: Hazards, Data, models, or simulations
Learn more about this review process.
Field Trip Guide: The 1964 Great Alaska Earthquake and Tsunami--Consequences of Living on the Leading Edge in Alaska
Robert Witter (ANGLE Project)
This is a guide to a field trip that visits sites in Anchorage, Girdwood, and Whittier Alaska. The focus of the trip is the understand the science and societal impacts of the 1964 Alaska Mag 9.2 earthquake as well as the ongoing EarthScope research on geohazards to help us better plan for future events. Participants practice a tsunami evacuation walk as way to foster discussion of preparedness actions and challenges.
Grade Level: High School (9-12), College Lower (13-14), Informal, General Public
Subject: Natural Hazards:Mass Wasting, Earthquakes, Tsunami, Natural Hazards, Mitigation and Preparedness, Tectonics, Geodesy, Engineering, Geoscience
EarthScope Geophysics Data: Data: Data:GPS/GNSS, Geophysics GPS/GNSS
Special Interest: Field-Based Teaching and Learning, Hazards, Quantitative
Quantitative Skills: Graphs
Coastal Alaska is Tsunami Country (in 9 languages)
USGS ShakeAlert program and EarthScope ANGLE project participants
Factsheet and infographics on protecting yourself in a tsunami hazard zone in Alaska. Whether coastal Alaska is your home, workplace, or a travel destination, it is important to know how to stay safe in the event of a tsunami. Safety actions vary for different communities in Alaska.
Grade Level: General Public, Informal, Intermediate (3-5), Middle (6-8), High School (9-12), College Lower (13-14)
Subject: Natural Hazards, Tsunami
Special Interest: Hazards