Search SERC


Refine the Results↓

Information Type Show all

Location Show all


Current Search Limits:
Neotoma

Results 11 - 15 of 15 matches

Species distributions in response to environmental gradients in the Upper Midwest of the United States - an example using the Neotoma database part of Neotoma:Teaching Activities
Pollen and ostracode records are used here to examine the migration of a major ecotone (transition zone between two biomes) in the Northern Midwest known as the prairie-forest border. Using the Neotoma database, we can explore the modern geographic distribution of prairie and forest vegetation (represented by pollen data) and of saline and freshwater lakes (represented by ostracodes, microscopic aquatic crustaceans) and then track the shifting boundary of the prairie forest border over the most recent 12,000 years using a lake sediment core.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Advanced exploration of the ecological consequences of trophic downgrading in mixed/short grass prairies in North America part of Neotoma:Teaching Activities
North American ecosystems have fundamentally changed over the late Pleistocene and Holocene; from a system dominated by mammoths, to bison, to domestic livestock. Given the very different body size and herd formation of these 'ecosystem engineers', it is likely that animals influence soil structure, water tables, vegetation and other animals in the ecosystems. What has been the ecological influence of the continued 'downsizing' of the largest animals in the ecosystem?

What are the ecological consequences of trophic downgrading in mixed/short grass prairies in North America? part of Neotoma:Teaching Activities
North American ecosystems have fundamentally changed over the late Pleistocene and Holocene; from a system dominated by mammoths, to bison, to domestic livestock. Given the very different body size and herd formation of these 'ecosystem engineers', it is likely that animals influence soil structure, water tables, vegetation and other animals in the ecosystems. What has been the ecological influence of the continued 'downsizing' of the largest animals in the ecosystem?

Climate Change and Mammal Dispersal part of Neotoma:Teaching Activities
Students will learn how species shift along environmental gradients (temperature, precipitation, and vegetation) in response to climate change over the last 20,000 years, from the time of the Last Glacial Maximum through deglaciation and the Holocene. The activity involves making maps of species distribution using the Neotoma database. Students will develop skills in data analysis and interpretation over a two-to-four class arc.

California Climate and Vegetation Change Classroom Task part of Neotoma:Teaching Activities
This NGSS-aligned classroom task focuses on California's Mediterranean climate, and shifts in its floral diversity during the Holocene that reflect past climate change. Students first examine modern climate data from four disparate areas in the state and create climatographs. Using the Neotoma Paleoecology Database, students then look at past records in each of these four regions to assess pollen data as a proxy for climate change over time, and completeness of the record. Plant taxa in the fossil record are compared to modern plant tolerances and distribution available at CalFlora, and students then determine which plants are most sensitive to change by region, and preserve well as fossil pollen.