Quantitative Skills > Teaching Resources > Activities > BotEC: Velocity of Asteroids

Back-of-the-Envelope Calculations: Velocity of Asteroids

Barbara Tewksbury

Hamilton College
Author Profile



Asteroids zip through space at truly astounding velocities. Let's try to put that into perspective. It took the Apollo astronauts about 3 days to travel from the Earth to the Moon.

a) If you could drive the distance in your car at 100 km/hour (60 mph), how long would it take you to drive to the Moon?

b) Earth-crossing asteroids typically zoom along at 25 km/second (yes! per second! not per hour!). How long would it take a typical asteroid to travel the distance from the Moon to the Earth?



a) about half a year, and that's driving 24 hours a day without taking breaks. If you stopped for meals and slept at night, it would take about a year. At 100 km/hour, it takes 3840 hours to go the 384,000 km to the Moon. 3840 hours is about 160 days.

b) a little over 4 hours. 25 km/second is 90,000 km/hour. At that rate, it takes 4.3 hours to travel the 384,000 km between the Moon and the Earth. Pretty staggering...

References and Resources

This SERC page describes the use of Back of the Envelope Calculations

A View from the Back of the Envelope (more info) : This site has a good number of easy simulations and visualizations of back of the envelope calculations.

The Back of the Envelope : This page outlines one of the essays in the book "Programming Pearls" (ISBN 0-201-65788-0). The book is written for computer science faculty and students, but this portion speaks very well to back of the envelope calculations in general.

Controlled Vocabulary Terms

Subject: Geoscience:Lunar and Planetary Science
Resource Type: Activities:Classroom Activity:Short Activity
Special Interest: Quantitative
Grade Level: High School (9-12), College Lower (13-14)
Quantitative Skills: Estimation
Ready for Use: Ready to Use
Topics: Solar system
Theme: Teach the Earth:Course Topics:Planetary Science

See more Activities »