Elementary and Middle School (K-8) Activity Browse
Results 1 - 15 of 15 matches
Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
Fault Models for Teaching About Plate Tectonics part of EarthScope ANGLE:Educational Materials:Activities
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.
Earthquake Hazard Maps & Liquefaction: Alaska emphasis part of EarthScope ANGLE:Educational Materials:Activities
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.
Seismic Slinky: Modeling P and S waves part of EarthScope ANGLE:Educational Materials:Activities
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
Be Smart, Be Prepared! Planning an Emergency Backpack part of EarthScope ANGLE:Educational Materials:Activities
Participants learn what to do before, during, and after a potentially damaging earthquake. They brainstorm valuable components for an emergency supplies backpack and then present on their ideas. The primary resource is the booklet Are you prepared for the next big EARTHQUAKE in Alaska?
Alaska Earthquake Hazard Inventory & Mitigation Planning part of EarthScope ANGLE:Educational Materials:Activities
In this two-part activity, students/participants first: - Complete a Hazard Inventory for their city or area of interest in the event of a magnitude 7 or larger earthquake and tsunami. - Identify what critical structures and infrastructure will be affected. Then: - Write a summary statement assessing strengths and vulnerabilities of essential services or infrastructure. - Propose actions for mitigating vulnerabilities. - Create an Action Plan to address identified needs.
Build a Better Wall part of EarthScope ANGLE:Educational Materials:Activities
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.
Rocks are Elastic!! Seeing is Believing part of EarthScope ANGLE:Educational Materials:Activities
This activity helps learners see the elastic properties of rocks by actually bending marble. How rocks respond to stress is a fundamental concept, critical to forming explanatory models in the geosciences (e.g., elastic rebound theory). Whereas learners are likely to have lots of experience with rocks, few will have directly experienced them behaving elastically. As a result of this "missed experience", most learners conceptualize rocks as rigid solids; a concept which generally serves students well in everyday life but impedes learning about particular geologic concepts.
Discovering Plate Boundaries part of NAGT:Our Resources:Teaching Resources:Teaching Materials Collection
Students work collaboratively using data maps to discover plate tectonic boundary processes. Data sets used are earthquakes, volcanos, seafloor age, and topography. Show other versions of this activity Hide The ...
Measure a Changing Volcano part of EarthScope ANGLE:Educational Materials:Resources
This hands-on demonstration illustrates how GPS can be used to measure the inflation and deflation of a volcano. Volcanoes may inflate when magma rises closer to the surface and deflate when the pressure dissipates or after an eruption.
Melting ice cubes part of Oceanography:Activities
Explore how melting of ice cubes floating in water is influenced by the salinity of the water. Important oceanographic concepts like density and density driven currents are visualized and can be discussed on the ...
Geology of Westchester County, NY part of NAGT:Our Work:Past Projects:Teaching in the Field:Field Trip Collection
Thomas McGuire Cave Creek Digital, Cave Creek, AZ Intended Audience: These trips would be appropriate for students in grades 7-12, introductory college students, teachers and the general public. More advanced ...
Community College Geology Outreach Lesson Plan part of Introductory Courses:Activities
The activity is to give an introduction to geology including plate motion, types of rocks, and deep-time to elementary students to develop an interest and appreciation in the geosciences. Its strengths include ...
South Carolina Studies - Bringing the Geologic Time Scale Down to Earth in the Students' Backyard: part of NAGT:Our Work:Past Projects:Teaching in the Field:Field Trip Collection
John R. Wagner, Clemson University Intended Audience: This exercise is suitable for the general public, though we use it as part of an 8th grade unit on geologic time. Students should understand plate tectonics ...
Exploring Earth Systems Science: The Interactive GLOBE Earth System Poster part of Integrate:Workshops and Webinars:Teaching the Methods of Geoscience:Activities