Elementary and Middle School (K-8) Activity Browse
Resource Type: Activities
Results 1 - 20 of 857 matches
Activity 10: Feedback Loops Applied part of Teach the Earth:Teaching Activities
Students apply the vocabulary and concepts from the Activity 9: Feedback Loop Introduction to assess and create earth science feedback loops with the LOOPY online modeling program. (Optional) The students then ...
Volcano Monitoring with GPS: Westdahl Volcano Alaska part of EarthScope ANGLE:Educational Materials:Activities
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...
Exploring Tectonic Motions with GPS part of EarthScope ANGLE:Educational Materials:Activities
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change
Converging Tectonic Plates Demonstration part of Geodesy:Activities
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.
Seismic Slinky: Modeling P and S waves part of EarthScope ANGLE:Educational Materials:Activities
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
World Map of Plate Boundaries part of EarthScope ANGLE:Educational Materials:Activities
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.
Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
How Do We Know Where an Earthquake Originated? part of EarthScope ANGLE:Educational Materials:Activities
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.
Fault Models for Teaching About Plate Tectonics part of EarthScope ANGLE:Educational Materials:Activities
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.
Activity 6: Creating a Systems Diagram part of Teach the Earth:Teaching Activities
In this activity students learn the steps to create a systems diagram and then apply those steps to create a systems diagram of the wastewater system. Students are provided with additional written information that ...
Activity 8: Equilibrium Experiment part of Teach the Earth:Teaching Activities
Students explore the systems thinking concepts of equilibrium and nonequilibrium with a water pouring experiment. Students complete the activity at home or virtually with videos. Water is poured from a top ...
Lesson 3: The Value of a Water Footprint (Middle School) part of Teach the Earth:Teaching Activities
Session 1 of this lesson begins with a quick activity to get students thinking about their direct and virtual water use. It introduces a few new ideas for virtual water use that may surprise students, including the ...
Student-Generated Sustainability Short Stories Anchored in Science and Information Literacies and the SDGs part of Teach the Earth:Teaching Activities
To build and improve upon their science and information literacies, students create a collection of short non-fiction stories that connect to at least one of the United Nations Sustainable Development Goals (SDGs). ...
Earthquake Machine part of EarthScope ANGLE:Educational Materials:Activities
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.
Lesson 1: Water Resources and Water Footprints (Middle School) part of Teach the Earth:Teaching Activities
This lesson helps students understand why Earth is considered the "water planet." Students analyze how much of Earth's water is available for humans to use for life-sustaining purposes, and they ...
Ocean currents and overflows part of Teach the Earth:Teaching Activities
We are researchers and teachers in physical oceanography. Here we provide a lesson plan including materials, to explore ocean currents and specifically "underwater waterfalls", i.e., overflows in the ...
Earthquake Hazard Maps & Liquefaction: Alaska emphasis part of EarthScope ANGLE:Educational Materials:Activities
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.
Lesson 2: My Water Footprint (Middle School) part of Teach the Earth:Teaching Activities
This lesson centers on a deeper exploration of the water footprint associated with food. Students learned in Lesson 1 that virtual water, especially as it relates to food, typically makes up the majority of their ...
Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics part of Geodesy:Activities
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.
Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics part of Geodesy:Activities
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.