Elementary and Middle School (K-8) Activity Browse

Search for activities specifically designed for K-8 education. Refine this search by either clicking on the terms in boxes to the right or typing a term into the search box below. Activities include a description, background information, and necessary student documents.


Results 1 - 20 of 851 matches

Activity 10: Feedback Loops Applied part of Teach the Earth:Teaching Activities
Students apply the vocabulary and concepts from the Activity 9: Feedback Loop Introduction to assess and create earth science feedback loops with the LOOPY online modeling program. (Optional) The students then ...

Activity 9: Feedback Loops Introduction part of Teach the Earth:Teaching Activities
Students are introduced to feedback loop vocabulary and experiment with different relationships between reservoirs in simple feedback loops using LOOPY, a free, online modeling program.

Student-Generated Sustainability Short Stories Anchored in Science and Information Literacies and the SDGs part of Teach the Earth:Teaching Activities
To build and improve upon their science and information literacies, students create a collection of short non-fiction stories that connect to at least one of the United Nations Sustainable Development Goals (SDGs). ...

Measuring Ground Motion with GPS: How GPS Works part of Geodesy:Activities
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.

Lesson 2: My Water Footprint (Middle School) part of Teach the Earth:Teaching Activities
This lesson centers on a deeper exploration of the water footprint associated with food. Students learned in Lesson 1 that virtual water, especially as it relates to food, typically makes up the majority of their ...

Lesson 3: The Value of a Water Footprint (Middle School) part of Teach the Earth:Teaching Activities
Session 1 of this lesson begins with a quick activity to get students thinking about their direct and virtual water use. It introduces a few new ideas for virtual water use that may surprise students, including the ...

Volcano Monitoring with GPS: Westdahl Volcano Alaska part of EarthScope ANGLE:Educational Materials:Activities
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...

Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.

Seismic Slinky: Modeling P and S waves part of EarthScope ANGLE:Educational Materials:Activities
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.

Earthquake Hazard Maps & Liquefaction: Alaska emphasis part of EarthScope ANGLE:Educational Materials:Activities
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.

World Map of Plate Boundaries part of EarthScope ANGLE:Educational Materials:Activities
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.

Fault Models for Teaching About Plate Tectonics part of EarthScope ANGLE:Educational Materials:Activities
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.

How Do We Know Where an Earthquake Originated? part of EarthScope ANGLE:Educational Materials:Activities
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.

Lesson 1: Water Resources and Water Footprints (Middle School) part of Teach the Earth:Teaching Activities
This lesson helps students understand why Earth is considered the "water planet." Students analyze how much of Earth's water is available for humans to use for life-sustaining purposes, and they ...

Earthquake Machine part of EarthScope ANGLE:Educational Materials:Activities
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.

Building Shaking —Variations of the BOSS Model part of EarthScope ANGLE:Educational Materials:Activities
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.

Iceberg of Antarctica part of IODP School of Rock 2020:Teaching Activities
After exploring the various hands-on, art, kinesthetic activities, and electronic resources after reading the book: Iceberg of Antarctica by Marlo Garnsworthy, students will develop, create, and produce their own ...

Water Optimism - focusing on solutions for the hydrosphere in a take-home final exam part of Teach the Earth:Teaching Activities
This take-home final exam asks students to demonstrate their improved skills in searching for sources (information literacy) and writing on freshwater science/society/policy intersections (science literacy), and ...

Let's Look Inside the Earth part of Teach the Earth:Teaching Activities
Students will analyze USGS seismology data in the classroom using spreadsheets and scatter plots to look for patterns and structure in the Earth's crust. Before analyzing data, students will learn about the ...

Activity 7: Limitations of Systems Diagrams part of Teach the Earth:Teaching Activities
This activity teaches students about the value of planning, knowing, and explaining the limitations of a systems diagram. Students are taught to follow the following four steps when assessing the limitations of a ...