Elementary and Middle School (K-8) Activity Browse
Resource Type: Activities Show all
Activities > Lab Activity
125 matchesGrade Level Show all
Intermediate (3-5)
125 matchesResults 1 - 20 of 125 matches
Earthquake Hazard Maps & Liquefaction: Alaska emphasis part of EarthScope ANGLE:Educational Materials:Activities
Ground shaking is the primary cause of earthquake damage to man-made structures. This exercise combines three related activities on the topic of shaking-induced ground instability: a ground shaking amplification demonstration, a seismic landslides demonstration, and a liquefaction experiment. The amplitude of ground shaking is affected by the type of near-surface rocks and soil. Earthquake ground shaking can cause even gently sloping areas to slide when those same areas would be stable under normal conditions. Liquefaction is a phenomenon where water-saturated sand and silt take on the characteristics of a dense liquid during the intense ground shaking of an earthquake and deform. Includes Alaska and San Francisco examples.
World Map of Plate Boundaries part of EarthScope ANGLE:Educational Materials:Activities
The plate tectonics mapping activity allows students to easily begin to identify basic tectonic processes on a global scale. As students become aware of plate movements, they begin to identify patterns that set the stage for deeper understanding of a very complex topic. The activity uses a simple "Where's Waldo" approach to identify tectonic symbols on a laminated World Plate Tectonic map.
Seismic Slinky: Modeling P and S waves part of EarthScope ANGLE:Educational Materials:Activities
Students will produce P and S waves using a Slinky© to understand how seismic waves transfer energy as they travel through solids. All types of waves transmit energy, including beach waves, sound, light, and more. When an earthquake occurs it generates four different types of seismic waves. We will focus on two of these: Compressional-P (longitudinal) and shearing-S (transverse) "body waves." These travel through the Earth with distinct particle motion and predictable speed.
Fault Models for Teaching About Plate Tectonics part of EarthScope ANGLE:Educational Materials:Activities
This short interactive activity has learners to manipulate fault blocks to better understand different types of earthquake-generating faults in different tectonic settings--extensional, convergent, and strike-slip. Fault models aid in visualizing and understanding faulting and plate motions because the instructor and their students can manipulate a three-dimensional model for a true hands-on experience.
Human Wave: Modeling P and S Waves part of EarthScope ANGLE:Educational Materials:Activities
Lined up shoulder-to-shoulder, learners are the medium that P and S waves travel through in this simple, but effective demonstration. Once "performed", the principles of P and S waves will not be easily forgotten. This demonstration explores two of the four main ways energy propagates from the hypocenter of an earthquake as P and S seismic waves. The physical nature of the Human Wave demonstration makes it a highly engaging kinesthetic learning activity that helps students grasp, internalize and retain abstract information.
Earthquake Machine part of EarthScope ANGLE:Educational Materials:Activities
In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.
Understanding Earthquakes: Comparing seismograms part of EarthScope ANGLE:Educational Materials:Activities
Introductory lesson that contextualizes how multiple instruments provide a more complete picture on an event.
Frequency of Large Earthquakes part of EarthScope ANGLE:Educational Materials:Activities
Using the IRIS Earthquake Browser tool, students gather data to support a claim about how many large (Mw 8+) earthquakes will happen globally each year. This activity provides scaffolded experience downloading data and manipulating data within a spreadsheet.
Reading an Earthquake Seismogram part of EarthScope ANGLE:Educational Materials:Activities
Introductory lesson that deconstructs the information that can be gleaned from a single seismogram.
Cupcake Geology: Interpreting Core Samples part of EarthScope ANGLE:Educational Materials:Activities
This activity helps students understand how geoscientists study the Earth below our feet through drilling. Using a large straw as a "drill", students collect samples through different parts of the specially layered cupcake and keep a "log" of the drill core. By defining different colored cake and filling, they can reconstruct what the interior of the cupcake may look like. Students gain an appreciation for the challenges of determining a plausible geologic interpretation with limited data.
Be Smart, Be Prepared! Planning an Emergency Backpack part of EarthScope ANGLE:Educational Materials:Activities
Participants learn what to do before, during, and after a potentially damaging earthquake. They brainstorm valuable components for an emergency supplies backpack and then present on their ideas. The primary resource is the booklet Are you prepared for the next big EARTHQUAKE in Alaska?
Build a Better Wall part of EarthScope ANGLE:Educational Materials:Activities
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.
Rocks are Elastic!! Seeing is Believing part of EarthScope ANGLE:Educational Materials:Activities
This activity helps learners see the elastic properties of rocks by actually bending marble. How rocks respond to stress is a fundamental concept, critical to forming explanatory models in the geosciences (e.g., elastic rebound theory). Whereas learners are likely to have lots of experience with rocks, few will have directly experienced them behaving elastically. As a result of this "missed experience", most learners conceptualize rocks as rigid solids; a concept which generally serves students well in everyday life but impedes learning about particular geologic concepts.
Pasta Quake: Exploring Earthquake Magnitude part of EarthScope ANGLE:Educational Materials:Activities
This short activity provides an intuitive introduction to earthquake magnitude using an everyday item--spaghetti. Learners are introduced to the earthquake magnitude scale by breaking different amounts of uncooked noodles. Visual scale of the pasta emphasizes the relative differences between magnitudes with each whole step in magnitude. For older students, the demonstration helps students understand why seismologists use the nonlinear logarithmic scale to best graph the huge range of quantities.
Microplastics and marine environment part of Teach the Earth:Teaching Activities
Marine micro-plastics are a relatively recent issue in research (Thompson et al. 2004), in the media and in education and, due to novelty and relevance, they are a suitable topic for addressing Ocean Literacy ...
Iceberg of Antarctica part of IODP School of Rock 2020:Teaching Activities
After exploring the various hands-on, art, kinesthetic activities, and electronic resources after reading the book: Iceberg of Antarctica by Marlo Garnsworthy, students will develop, create, and produce their own ...
Getting Started with the ShakeNet Data Portal part of EarthScope ANGLE:Educational Materials:Activities
Teacher guide and tutorial for using the RaspberryShake ShakeNet data portal.
"We Need All the Assistance You Have..." part of EarthScope ANGLE:Educational Materials:Activities
This exercise provides a basic introduction to volcanic hazards. Students learn about different types of volcanic hazards through researching examples from Alaskan eruptions. They also group the hazards as proximal and distal to consider how emergency response plans might differ. A recording of the KLM flight 867 flight that lost power to all four engines when it flew into an ash cloud from a 1989 Mt Redoubt eruption provides a compelling example of risk from volcanoes. (Note: the plane was ultimately able to regain enough power to land safely in Anchorage.) Students learn about the Volcano Hazards Alert-Notification System for both ground-based and aviation applications.
Melting ice cubes part of Oceanography:Activities
Explore how melting of ice cubes floating in water is influenced by the salinity of the water. Important oceanographic concepts like density and density driven currents are visualized and can be discussed on the ...
Lab Field Trip program for K-12 Students, Hosted by University Researchers part of Teach the Earth:Teaching Activities
University researchers host K-12 students for a hands-on laboratory field trip that is integrated with science class curriculum and includes mentorship and/or broadening diversity in science activities. Students ...