High School (9-12) Activity Browse


Search for activities specifically designed for 9-12 education. Refine this search by either clicking on the terms in boxes to the right or typing a term into the search box below. Activities include a description, background information, and necessary student documents.




Results 1 - 20 of 539 matches

Converging Tectonic Plates Demonstration part of Geodesy:Activities
During this demo, participants use springs and a map of the Pacific Northwest with GPS vectors to investigate the stresses and surface expression of subduction zones, specifically the Juan de Fuca plate diving beneath the North American plate.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

3D View from a Drone | Make a 3D Model From Your Photos part of Geodesy:Activities
Using cameras mounted to drones, students will design and construct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform in a process called structure from motion (SfM). This activity has both a hands-on component (collecting data with the drone) and a computer-based component (creating the 3-dimensional model).___________________Drones can take photos that can be analyzed later. By planning ahead to have enough overlap between photos, you take those individual photos and make a 3-dimensional image!In this activity, you guide the students to identify an outcrop or landform to study later or over repeat visits. They go through the process to plan, conduct, and analyze an investigation to help answer their science question.The Challenge: Design and conduct an experiment to take enough photos to make a 3-dimensional image of an outcrop or landform, then analyze the image and interpret the resulting 3-d image.For instance they might wish to study a hillside that has been changed from a previous forest fire. How is the hillside starting to shift after rainstorms or snows? Monitoring an area over many months can lead to discoveries about how the erosional processes happen and also provide homeowners, park rangers, planners, and others valuable information to take action to stabilize areas to prevent landslides.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics part of Geodesy:Activities
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Lake Mixing Module part of Project EDDIE:Teaching Materials:Modules
Stratified lakes exhibit vertical gradients in organisms, nutrients, and oxygen, which have important implications for ecosystem structure and functioning. Mixing disrupts these gradients by redistributing these ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Visualizing Relationships with Data: Exploring plate boundaries with Earthquakes, Volcanoes, and GPS Data in the Western U.S. & Alaska | Lessons on Plate Tectonics part of Geodesy:Activities
Learners use the GPS Velocity Viewer, or the included map packet to visualize relationships between earthquakes, volcanoes, and plate boundaries as a jigsaw activity.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Water Quality Module part of Project EDDIE:Teaching Materials:Modules
Water quality is a critical concept for undergraduate students studying Earth Sciences, Biology, and Environmental Sciences. Many of these students will be asked to assess the impacts of a proposed anthropogenic ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring Ground Motion with GPS: How GPS Works part of Geodesy:Activities
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Exploring California's Plate Motion and Deformation with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Students analyze data to study the motion of the Pacific and North American tectonic plates. From GPS data, students detect relative motion between the plates in the San Andreas fault zone--with and without earthquakes. To get to that discovery, they use physical models to understand the architecture of GPS, from satellites to sensitive stations on the ground. They learn to interpret time series data collected by stations (in the spreading regime of Iceland), to cast data as horizontal north-south and east-west vectors, and to add those vectors head-to-tail.Students then apply their skills and understanding to data in the context of the strike-slip fault zone of a transform plate boundary. They interpret time series plots from an earthquake in Parkfield, CA to calculate the resulting slip on the fault and (optionally) the earthquake's magnitude.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Measuring Plate Motion with GPS: Iceland | Lessons on Plate Tectonics part of Geodesy:Activities
This lesson teaches middle and high school students to understand the architecture of GPS—from satellites to research quality stations on the ground. This is done with physical models and a presentation. Then students learn to interpret data for the station's position through time ("time series plots"). Students represent time series data as velocity vectors and add the vectors to create a total horizontal velocity vector. They apply their skills to discover that the Mid-Atlantic Ridge is rifting Iceland. They cement and expand their understanding of GPS data with an abstraction using cars and maps. Finally, they explore GPS vectors in the context of global plate tectonics.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Module 4: Global Records of Climate Change - The Deep Sea and Ice Cores part of Neotoma:Teaching Activities
In this module, students explore and analyze records of past climate. In the first part of the module, students are given background information about long-term records of Earth's climate: deep sea sediment cores and ice cores. Students are also introduced to Oxygen isotopes and how they are used as records of past climate. Students complete a set of exercises that assess their understanding of the material and ask them to analyze data about the Laurentide Ice Sheet using the Neotoma Explorer. In the second part of the module, students examine Antarctic ice core data and apply their knowledge from the beginning of the module. Part of the Neotoma Education Modules for Biotic Response to Climate Change.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Grand Canyon Cross Section Lab part of GET Spatial Learning:Teaching Activities
× Students examine a geologic map of the Grand Canyon and two imaginary vertical cores through canyon stratigraphy. They use these data to construct a cross-section across the canyon and to answer questions ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Unit 5: The Sixth Extinction part of Changing Biosphere
In this unit, students will prepare by reading a couple of articles describing the causes and rates of mass extinctions, including the current "Sixth Extinction," and why conservation is important to ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 1: Introduction to the Geologic Timeline & Mass Extinctions part of Changing Biosphere
In this unit, students will identify mass extinctions as paleontologists have done and recognize and understand the "pull of the recent," that is, the human tendency to know more about events closer to ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 2: Causes of Mass Extinction part of Changing Biosphere
During Unit 2, students will learn about the causes of two past mass extinctions and discuss the controversies surrounding these causes and the evidence upon which the theories in the debates are based. Before ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 4: Impacts of Environmental Change on Organisms: Horses part of Changing Biosphere
In this unit, students will gain a deep-time perspective on how life evolves on a dynamic planet. They will use the Equidae (horse family) as a case study to examine the relationship among climate, biomes, and ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 3: The Interconnected Nature of the Atmosphere, Hydrosphere, and Biosphere part of Changing Biosphere
Using a systems dynamics approach, students will work in groups to conceptualize and construct a model of the global carbon cycle considering five major Earth systems: atmosphere, hydrosphere, geosphere, ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 1: What is Sustainability in the Context of Water? part of Water, Agriculture, Sustainability
In this three to four class unit, students will: Assess the case for a global water crisis and its relevance in America. Expand their understanding of sustainability as a contestable concept and movement. Consider ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Unit 2: Water Footprints part of Water, Agriculture, Sustainability
Unit 2 opens a window into water accounting and reveals intensive water use that few people think about. How much water goes into common commodities? Have you considered how much water it takes to support our ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.
InTeGrate Developed This material was developed and reviewed through the InTeGrate curricular materials development process.
Learn more about this review process.

Pinpointing Location with GPS Demonstration: How GPS Works (Part 2) part of Geodesy:Activities
Using string, bubble gum, and a model of a GPS station, demonstrate how GPS work to pinpoint a location on Earth.Precisely knowing a location on Earth is useful because our Earth's surface is constantly changing from earthquakes, volcanic eruptions, tectonic plate motion, landslides, and more. Thus, scientists can use positions determined with GPS to study all these Earth processes.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.