Wakemup Pluton
Summary
Context
Audience
Skills and concepts that students must have mastered
How the activity is situated in the course
Goals
Content/concepts goals for this activity
Higher order thinking skills goals for this activity
Other skills goals for this activity
3D spatial visualization, including mentally connecting sparse outcrops.
Description and Teaching Materials
Students answer the questions in the attached handout. We also have rock samples of the main lithologies present in the map area. When students have worked through most of the questions, we show them the two schematic Play-Doh models of the region at different stages of erosion (see photos), ask them how these models are related to the map, and answer any questions they have about the models and map.
Wakemup Pluton map activity (Microsoft Word 2007 (.docx) 107kB Dec10 19)
Science of Learning: Why It Works
Three-dimensional models can help to improve students' understanding of geological phenomena. Physical models, such as playdough models, serve as analogies to geological features and geologic maps. Analogies support the development of spatial thinking skills by allowing the student to draw from their knowledge and apply it to new cases (e.g., Gentner 1983). For example, students can reason from what they can experience when carving off pieces of playdough to how erosion will reveal geological structures). Analogical learning also applies to "mapping" -- that is, relating -- the features of models onto real world phenomena (e.g., this layer of playdough corresponds to a layer of sandstone). Physical models provide analogies to real-world phenomena, support cognitive offloading, and promote spatial accommodation.
Practice constructing spatial analogies can help students develop the mental models that allow them to recognize new cases of familiar concepts in the field. When instructors provide accurate physical models of geologic features, students can self-assess their understanding by comparing their mental model -- or their own physical model -- to the instructor's physical model. When students make their own physical models, these models serve as a means of "inscription," in much the same ways that mapping and sketching do: they allow for students to record their conceptual understanding of a natural phenomenon (Mogk and Goodwin, 2012). However, unlike mapping and sketching, a playdough model allows for this record to be three-dimensional, like the phenomenon itself, which can reduce the cognitive demands inherent in the process of inscription by reducing the need to generate a 2D representation of 3D space (Newcombe, 2012). In addition, physical models support spatial accommodation: when a student compares their (mental or physical) model of a phenomenon or region to their instructor's model and recognizes a difference between the models, the student is prompted to revise their mental model (Davatzes et al., 2008). When the change required is spatial the student may use the feedback directly to revise the model. When the change is significant, the student may need to completely discard their old model and construct a new one. Playdough models of geological structures can thus serve as the basis for improved mental models.
Teaching Notes and Tips
Assessment
References and Resources
Map:
The map for this activity is Bauer, R. L., 1985. Norwegian Bay Quadrangle, St. Louis County, Minnesota. Minnesota Geological Survey, Miscellaneous Map Series, Map M-59.
Additional References:
Davatzes et al. (2018). Learning to form accurate mental models. Eos, 99, https://doi.org/10.1029/2018EO091643. Published on 07 February 2018.
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170.
Mogk and Goodwin (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences, in Earth and Mind II: A synthesis of research on thinking and learning in the geosciences, edited by Kim A. Kastens and Cathryn A. Manduca. GSA Special Paper 486:131-163. DOI: 10.1130/2012.2486(24)
Newcombe, N. S. (2012). Two ways to help students with spatial thinking in geoscience. Geological Society of America Special Papers, 486, 85-86.