Earth Layers

Nicole LaDue, Northern Illinois University

Author Profile

Summary

Formative assessment questions using a classroom response system ("clickers") can be used to reveal students' spatial understanding.

Students are shown this diagram and instructed to "Click within the layer that is entirely liquid."

Used this activity? Share your experiences and modifications

Context

Audience

Students in an introductory-level geoscience course

Skills and concepts that students must have mastered

Students need to know which layer of the Earth's interior is entirely liquid.

How the activity is situated in the course

This activity is used as a formative assessment following a lecture or activity about the layers of the Earth's interior. Displaying the results after administering the question provides students and instructor immediate feedback about how well students understand the physical properties of these layers.

Goals

Content/concepts goals for this activity

The goal of this activity is to evaluate whether students understand the physical properties of the Earth's mantle and core.

Higher order thinking skills goals for this activity

Not applicable

Other skills goals for this activity

Not applicable

Description and Teaching Materials

Students use Top Hat technology to click on the layer of their choice, given the diagram shown above. TopHat creates a "heat map" of student answers, as shown at right. The instructor and students can see how well students, collectively, agree on the answer.

Science of Learning: Why It Works

There is accumulating evidence that engaging in spatial prediction and receiving feedback about the nature of one's errors leads to improved spatial reasoning (Gagnier et al. 2017; Resnick et al., 2017). Making a prediction, receiving feedback, and learning from the mismatch between the expected and actual outcomes is a process studied in cognitive science called the delta-rule model of learning (Rescorla and Wagner, 1972). Modern models of learning from the education research literature focuses on Piaget's concept of accommodation, where people will adjust their mental models as a consequence of the the feedback (Dole and Sinatra, 1998). Examples from research on geology concepts show us that students' build more scientifically accurate mental models after engaging in prediction and feedback. Gagnier et al. (2017) engaged students in making predictions about the interior of a geologic structure using block diagrams. The cycle of prediction and feedback facilitated students improved performance on a test of penetrative thinking. Resnick et al. (2017) engaged students in making predictions about the geologic time scale using a classroom response system (clickers). Students answered multiple-choice questions about the position of geologic events on a typical diagram of the geologic time scale. The spatial prediction clicker questions were as effective as, and more efficient than a hands-on meter stick activity at building a scientifically accurate linear conception of geologic time. Building on this research, we propose that the technique described here is a useful approach to identify students' spatial conceptions associated with various geologic phenomena (LaDue et al., 2021; LaDue and Shipley, 2018).

Teaching Notes and Tips

I use this activity to assess student understanding immediately after lecturing about the Earth's interior. Another diagram with a call-out (or zoom-in) of the top three layers of the earth was also created so students could click on those layers more precisely.


Assessment

This question is useful for students to self-assess where their answer fits relative to other students in the class. Top Hat displays student responses in a heat map image that highlights the most common answers. In most systems it is possible to designate a region for the correct answer, but receiving a right-wrong answer is likely less useful than engaging students in peer discussion if the students' responses do not converge on one region.

References and Resources

Resources: There are several systems that offer click-on-diagram questions. The one we use is: https://tophat.com

References

Beatty, I. D., & Gerace, W. J. (2009). Technology-enhanced formative assessment: A research-based pedagogy for teaching science with classroom response technology. Journal of Science Education and Technology, 18(2), 146-162.

Dole, J. A., & Sinatra, G. M. (1998). Reconceptalizing change in the cognitive construction of knowledge. Educational psychologist, 33(2-3), 109-128.

Gagnier, K. M., Atit, K., Ormand, C. J., & Shipley, T. F. (2017). Comprehending 3D diagrams: Sketching to support spatial reasoning. Topics in cognitive science, 9(4), 883-901.

LaDue, N. D., Ackerman, J. R., Blaum, D., & Shipley, T. F. (2021). Assessing Water Literacy: Undergraduate Student Conceptions of Groundwater and Surface Water Flow. Water, 13(5), 622.

LaDue, N.D. and Shipley, T.F. (2018). Click-on-Diagram Questions: A New Tool to Study Conceptions using Classroom Response Systems. Journal of Science Education and Technology, 27(6), 492-507.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research and theory, 2, 64-99.

Resnick, I., Newcombe, N. S., & Shipley, T. F. (2017). Dealing with big numbers: Representation and understanding of magnitudes outside of human experience. Cognitive science, 41(4), 1020-1041.