Leveraging Prior Student Experience to Understand the Unique Nature of Water in an Introductory Oceanography Class

Friday 3:00pm-4:00pm Beren Auditorium
Poster Session Part of Friday Poster Session

Session Chair

Rebecca Freeman, University of Kentucky
Understanding the water molecule and the unique properties of water is essential to understanding many phenomena in oceanography. An active-learning activity draws on students' prior knowledge and observations of the world to enhance their understanding of water. After discussing water chemistry and properties, students are given a series of statements summarizing the concepts. They then analyze a series of scenarios likely experienced in everyday life and identify the property of water being demonstrated. For example, shivering after getting out of the pool is a demonstration of the high heat of vaporization of water, and broken frozen pipes are a function of water's decrease in density (and increase in volume) as it goes from liquid to solid. The scenarios can reinforce previously learned concepts while introducing new ones. For instance, water absorbing into a paper towel is due to both adhesion (discussed), but also cohesion (discussed) through capillary action (a new concept).

Although hands-on laboratory activities and complex data manipulation are ideal strategies for teaching oceanography, they are not feasible in classes taught to many students in the lecture hall format common in introductory science classes at many universities. This exercise is designed to scale upwards to accommodate as many students as needed (including online), while requiring minimal to no materials or set-up. It can be adapted for students from different cultural backgrounds by varying the details of the scenarios to more accurately represent the shared experiences of the community. It does not require visuals, so can be adapted easily for visually-impaired students, especially if modified to emphasize experiences rather than observations. Students who do not have strong chemistry backgrounds are sometime overwhelmed by the basic chemistry necessary to understand the water molecule, but are relieved to discover that they are knowledgeable about water already, even without the accompanying scientific jargon.