Teaching Geology to Civil, Architectural, and Environmental Engineering Students
Oral Presentation
We teach the sole required geology course for undergraduate civil, architectural, and environmental engineering students at Drexel University. We are on the quarter system, so we have just ten weeks to undertake the daunting task of teaching them the geology they need as engineers. The students are generally in their third or fourth year of a five-year program. They have either had mechanics and construction materials or are taking those courses concurrently. Subsequently, most go on to take soil mechanics and foundation engineering, utilizing the material they learn in geology.
The first five weeks, we cover minerals, igneous, sedimentary and metamorphic rocks, with a focus on how the intrinsic properties of minerals and rocks influence their engineering properties. The second five weeks, we cover rock mechanics, structural geology, earthquakes, and geomorphology, with a focus on how physical processes influence the engineering properties of rock masses. Our primary objective is for students to be able to explain how the engineering properties of geologic materials influence the design, construction, and maintenance of infrastructure and environmental projects. A second objective is for them to explain how infrastructure projects are influenced by their topographic, hydrologic, surficial soil and underlying geologic settings.
The course typically has high enrollments (60 – 80 students). Currently, we have three hours of lecture and two hours of laboratory per week (four credit hours). Given time and space constraints, all of the students attend a single laboratory session in the classroom. The instructor and TA circulate around the room answering questions. As a result, each student gets very little time to interact with the instructor directly.
We will discuss our methods of teaching geology to engineering students in a large course, including engineering-focused activities we have developed to help the students apply their engineering knowledge to geologic materials.
The first five weeks, we cover minerals, igneous, sedimentary and metamorphic rocks, with a focus on how the intrinsic properties of minerals and rocks influence their engineering properties. The second five weeks, we cover rock mechanics, structural geology, earthquakes, and geomorphology, with a focus on how physical processes influence the engineering properties of rock masses. Our primary objective is for students to be able to explain how the engineering properties of geologic materials influence the design, construction, and maintenance of infrastructure and environmental projects. A second objective is for them to explain how infrastructure projects are influenced by their topographic, hydrologic, surficial soil and underlying geologic settings.
The course typically has high enrollments (60 – 80 students). Currently, we have three hours of lecture and two hours of laboratory per week (four credit hours). Given time and space constraints, all of the students attend a single laboratory session in the classroom. The instructor and TA circulate around the room answering questions. As a result, each student gets very little time to interact with the instructor directly.
We will discuss our methods of teaching geology to engineering students in a large course, including engineering-focused activities we have developed to help the students apply their engineering knowledge to geologic materials.