CURE Examples


Help

Results 1 - 10 of 16 matches

Exploring eukaryotic protein structure and post-translational modifications.
Erica Jacobs, Rockefeller University
This CURE will provide opportunity for students to think and act as researchers by using computational, biochemical, and bioanalytical techniques to examine tick antigen proteins. The CURE is designed as a lab for upper-level students who are taking or have taken a one-semester introductory biochemistry course, but two semesters would be even better. It could also be adapted for cell/molecular biology or (bio) analytical chemistry instrumentational analysis labs. It has been taught for classes ranging from 12-24 students. Ticks are notorious vectors of viral, protozoan, and bacterial diseases, including Lyme disease. While an anti-vector vaccine capable of protecting people from diseases transmitted by a particular tick species is an alluring goal, only one such anti-tick vaccine is currently available. This vaccine targets Bm86, a protein from the midgut of Rhipicephalus microplus, a cattle tick. Not only does the vaccine limit parasitism of the cattle by ticks, data suggests that it can also prevent transmission of tick-borne diseases including bovine anaplasmosis and babesiosis. However, similar vaccination approaches have not succeeded thus far against ticks that transmit diseases to humans, and little is known about the antibody response to the antigen, or about the protein itself. Since the protein's structure and function are unknown, the research goal of this CURE is to purify Bm86 using an insect cell/baculovirus expression system and characterize it, including domain structure and post-translational modifications (glycosylation sites). There are homologs to Bm86 in every sequenced tick species examined, and future CUREs will characterize some of the homologs including those in Ixodes scapularis, the tick that is mainly responsible for transmitting Lyme in the eastern US, and Haemaphysalis longicornis, the Asian longhorned tick, a newly-discovered invasive species in the area that also has significant disease-transmitting potential. By understanding the structure and post-translational modifications of this protein, we hope to gain a better understanding of how to make effective anti-tick vaccines, including those for humans, that may prevent transmission of Lyme disease. Importantly, the basic parameters of this CURE can be used to examine other proteins besides tick antigens. For example, during the pandemic, the CURE pivoted from the tick antigen to the SARS-CoV-2 nucleocapsid protein, which was also expressed in an insect cell system. Instead of characterizing glycosylation sites, we characterized phosphorylation sites. It's therefore possible to use this same framework for many different eukaryotic proteins that may be of research interest.

Discipline: Chemistry:Analytical Chemistry, Biochemistry, Life Sciences:Molecular Biology
Core Competencies: Analyzing and interpreting data, Planning and carrying out investigations
Target Audience: Major
CURE Duration: A full term

Testing the reliability of various miRNA-scanning tools to predict and establish novel miRNAs and their function in Musa sp.
Supriyo Ray, Bowie State University
Bananas (Musa sp.) are one if the world's most important fruit and forms a staple food especially for tropical and subtropical countries. It provides food security to millions of people and an important contributor to their economy. miRNAs are non-coding small RNAs that help regulate many biological processes by degrading mRNAs and stopping their expression to proteins. miRNA libraries have been well characterized in animal cells while, there is much work left to be done for plants especially bananas. Few miRNAs have been identified for bananas and their regulation have been associated with external stimuli such as infection, stress, resistance etc. yet, lot of work needs to be done to develop a comprehensive library for banana cultivars. In this CURE program the students would participate and do research to predict and establish novel miRNAs in banana cultivars.

Discipline: Life Sciences:Molecular Biology, Social Sciences:Education, Life Sciences, Plant Biology
Core Competencies: Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Translational Research, Basic Research, Informatics/Computational Research, Applied Research, Field Research
Target Audience: Non-major, Major
CURE Duration: A full term

Identification of transcriptional factors linked to resistance to drought stressors in Musa accessions for multiplication and maintenance using tissue culture techniques
David Igwe, Bowie State University
Musa species are the favorite fruit crops of the world and their genotypes derived from M. acuminata (AA) and M. balbisiana (BB) exist and are highly polyploidy. They are challenged by drought effect that adversely impacts its growth, productivity and yield. Interestingly, genotypes with "B" genome (in particular ABB type) are more tolerant to abiotic stresses than those solely possessing "A" genome. Drought responses are notoriously multigenic and quantitative with strong environmental effects on genotypes. Transcription factors (TFs) are major players in drought stress signaling and generally constitute major portion of transcriptionally active regions in banana genome to act as central domain for drought signaling networks. Overexpression of some of drought stress-responsive TFs constitute effects of drought tolerance and resistance. The overall goal of this project is to assess transcriptional factors responsible for phenotypic expressions of resistance of Musa accessions to drought stressor for mass production and continuous maintenance of the selected accessions for research and CURE program.

Discipline: Statistics, Life Sciences:Molecular Biology, Genetics
Nature of Research: Informatics/Computational Research, Wet Lab/Bench Research, Translational Research, Field Research, Basic Research, Applied Research
State: Maryland
Target Audience: Major, Non-major
CURE Duration: A full term

Inquiry in Biochemistry: From Gene to Protein Function
Kristina Cohen, Brown University
The central question we ask in this course is: How does a genetic change affect protein function? We explore this question using the enzyme beta-galactosidase (b-gal). Working in small teams, students formulate a hypothesis about how a single amino acid change in b-gal would affect enzyme function. They introduce this mutation, clone the modified sequence into an expression host, express and purify the experimental and control enzymes, and compare their kinetics to determine whether enzyme function was affected by the mutation. Students become a specialist in either molecular biology or biochemistry and teach their peers lab techniques. In a discussion section, they learn scientific writing and engage in peer review and iterative revisions to reflect on and refine their writing skills.

Discipline: Life Sciences, Molecular Biology, Chemistry:Biochemistry
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research
State: Rhode Island
Target Audience: Major, Upper Division
CURE Duration: A full term

Bowie State University PARE Research
Kari Debbink, Bowie State University
Treating bacterial diseases is increasingly complicated by widespread development of antibiotic-resistant strains. While many factors drive antibiotic resistance including inappropriate prescription and use in hospital settings, agricultural uses are also hypothesized to impact development of drug-resistant microbes. Antibiotics are used in agriculture to prevent and treat diseases in livestock, thus protecting our food sources. However, over half of all antibiotics used in the United States every year are used non-therapeutically to increase livestock growth, and the impact of this use in livestock on the development of drug resistance in human pathogens is not well studied. The PARE project (Assessing the Prevalence of Antibiotic-Resistance in the Environment) is an initiative aimed at involving undergraduates in measuring antibiotic resistance of bacteria found in soil samples from a variety of sites across the United States. Bowie State University students will map antibiotic resistance in and around Bowie, Maryland, comparing agricultural and non-agricultural sites as well different antibotics.

Discipline: Environmental Science:Soils and Agriculture, Geoscience:Soils, Life Sciences:Ecology, Life Sciences, Microbiology, Health Sciences, Environmental Science
Nature of Research: Field Research
State: Maryland
Target Audience: Major
CURE Duration: Half a term

Substrate specificity investigations using bioinformatics, site-directed mutagenesis, and in vitro enzyme assays
Carol Price, University of Virginia-Main Campus
Can the function (substrate specificity) of an enzyme be changed via site specific mutagenesis? For this question, students are provided with a plasmid encoding an enzyme with a demonstrated function (in vitro). They are then charged with choosing a mutation in the active site that they believe will change substrate specificity, introducing the mutation, purifying the mutant protein, and studying the enzyme activity of that mutant relative to the wild-type.

Discipline: Chemistry:Biochemistry, Chemistry
Core Competencies: Analyzing and interpreting data, Planning and carrying out investigations
Nature of Research: Basic Research
State: Virginia
Target Audience: Major
CURE Duration: Multiple terms

CRISPR-Cas9, Pancreatic Cancer, and Science Identity
Latanya Hammonds-Odie, Georgia Gwinnett College
At GGC, we have a history of providing all biology majors with meaningful laboratory experiences. For example, in our Cell Biology course that all majors are required to take, students learn to culture mammalian cells and design their own experiments using these cells. We plan to extend the in silico research of students into "wet bench" investigations for another course. Each student group would develop a rationale for their selection of gene(s) based on differential expression and on the current human pancreatic cancer research literature. They would design and implement a CRISPR-Cas9 deletion strategy to reduce specific gene expression that would be confirmed using immunoblotting and/or immunocytochemistry. Students would measure the proliferation, migration, and apoptosis of the control and the modified pancreatic cancer cells to assess the impact of their genetic manipulation. Harnessing the power of next-generation sequencing analysis with the ability to target specific genes for a reduction in expression will add to the knowledge base in the field; while allowing students to perform techniques that they have only explored in a lecture setting. For the students, the degree of ownership in the project, the stated confidence in the ability to "think like a scientist" and the ability to perform specific techniques should increase to a level comparable to a one-on-one mentored research experience.

Discipline: Life Sciences, Molecular Biology, Cell Biology
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Wet Lab/Bench Research, Basic Research
State: Georgia
Target Audience: Major, Upper Division
CURE Duration: A full term

Genetic Diversity and phylogenetic studies of Mushrooms in the Bowie State University Campus
George Ude, Bowie State University
The goal of my CURE is to have students be able to study biodiversity and genetic relationships among species. Students will utilize DNA barcoding techniques and other DNA fingerprinting techniques to study mushroom collections from Bowie State University ecosystem.

Discipline: Life Sciences, Molecular Biology
Nature of Research: Field Research, Basic Research, Applied Research
CURE Duration: A full term

Aging through Genes
Tyesha Burks, Bowie State University

Using gene editing tool CRISPR/Cas9 to study activating and deactivating mutations and their role in pancreatic cancer.
irfana muqbil, University of Detroit Mercy
This lab project will allow undergraduate students to conduct actual bench research to understand gain-of-function and loss-of-function mutation in relation to cancer. The project will be a team driven effort in which each student will be involved and responsible for the completion of the project. students will be trained in basic lab skills, safety and techniques with the hope that students will be able to apply these in gene editing projects.

Discipline: Chemistry:Biochemistry