Educational Materials Collection

Welcome to the EarthScope ANGLE educational materials collection! To get started, type a keyword into the search bar or refine your search using the boxes on the right.



Current Search Limits:
College Lower (13-14)

Results 11 - 20 of 30 matches

Alaskan Volcanoes & Hazards Presentation
This lecture and associated animations give a basic introduction to Alaskan volcanoes, volcanic hazards, and volcano monitoring.

Resource Type: Lecture, Audio/Visual:Animations/Video
Grade Level: General Public, Middle (6-8), College Lower (13-14), High School (9-12)
Subject: Engineering, Geodesy, Geoscience, Seismology, Natural Hazards, Volcanism
EarthScope Geophysics Data: Data: Data:GPS/GNSS, Geophysics GPS/GNSS, Data:Seismic
Special Interest: Data, models, or simulations, Hazards, Process of Science, Quantitative
Quantitative Skills: Arithmetic/Computation, Graphs, Vectors and Matrices

Earthquake Basics Presentation
Robert Butler (ANGLE Project)
This lecture and associated animations give a strong introduction to earthquakes--including earthquake waves, magnitude, intensity, USArray seismic data, and resulting hazards such as landslides, liquefaction, and building failure. It also includes some information on seismically resilient building design. It uses Alaska as the case study site. A similar lecture featuring the USA's Pacific Northwest region is available from the Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP)

Resource Type: Audio/Visual:Animations/Video, Lecture
Grade Level: College Lower (13-14), General Public, High School (9-12), Middle (6-8)
Subject: Natural Hazards:Mass Wasting, Mitigation and Preparedness, Earthquakes, Natural Hazards, Seismology, Tectonics, Geoscience
EarthScope Geophysics Data: Data: Data:Seismic
Special Interest: Hazards

Building Shaking —Variations of the BOSS Model
IRIS (Incorporated Research Institutions for Seismology), FEMA (Federal Emergency Management Administration), ShakeAlert, Chris Hedeen (Oregon City High School), and ANGLE Project
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.

Resource Type: Activities:Outreach Activity, Lab Activity, Classroom Activity
Grade Level: Middle (6-8), College Lower (13-14), High School (9-12)
Subject: Geoscience, Natural Hazards:Earthquakes, Natural Hazards, Mitigation and Preparedness, Engineering
Special Interest: Quantitative, Process of Science, Hazards, Data, models, or simulations
Quantitative Skills: Gathering Data, Graphs
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Alaska Earthquake Hazard Inventory & Mitigation Planning
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
In this two-part activity, students/participants first: - Complete a Hazard Inventory for their city or area of interest in the event of a magnitude 7 or larger earthquake and tsunami. - Identify what critical structures and infrastructure will be affected. Then: - Write a summary statement assessing strengths and vulnerabilities of essential services or infrastructure. - Propose actions for mitigating vulnerabilities. - Create an Action Plan to address identified needs.

Resource Type: Activities:Classroom Activity, Lab Activity, Project
Grade Level: General Public, Middle (6-8), College Lower (13-14), High School (9-12)
Subject: Natural Hazards:Subsidence, Tsunami, Natural Hazards, Policy, Natural Hazards:Mass Wasting, Mitigation and Preparedness, Geoscience, Natural Hazards:Earthquakes
Special Interest: Hazards
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Be Smart, Be Prepared! Planning an Emergency Backpack
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
Participants learn what to do before, during, and after a potentially damaging earthquake. They brainstorm valuable components for an emergency supplies backpack and then present on their ideas. The primary resource is the booklet Are you prepared for the next big EARTHQUAKE in Alaska?

Resource Type: Activities:Classroom Activity, Lab Activity, Outreach Activity
Grade Level: Informal, Middle (6-8), Intermediate (3-5), General Public, High School (9-12), College Lower (13-14)
Subject: Natural Hazards:Tsunami, Volcanism, Mitigation and Preparedness, Earthquakes
Special Interest: Hazards

SeismicWaves Viewer & SeismicEruption Software
Roger Groom, Mt Tabor Middle School
This activity includes both the Seismic Waves Viewer and the Seismic Eruption software to help learners better understand earthquakes, volcanoes, and the structure of the Earth. Seismic Waves is a browser-based tool to visualize the propagation of seismic waves from historic earthquakes through Earth's interior and around its surface. By carefully examining these seismic wave fronts and their propagation, the Seismic Waves tool illustrates how earthquakes can provide evidence that allows us to infer Earth's interior structure. Seismic Eruption shows seismicity (earthquakes) and volcanic activity in space and time from 1960 to present. When the program is running, the user sees lights, which represent earthquakes, flashing on the screen in speeded-up time. The user can control the speed of the action. In addition, the program can show seismicity under Earth's surface in three-dimensional and cross-sectional views. Earthquakes can be selected by magnitude and volcanic eruptions can be selected by volcanic explosivity index. In this way, large earthquakes and large eruptions can be selected to emphasize how different types of plate boundaries are characterized by different magnitudes of earthquakes (e.g. no major or great earthquakes occur on spreading ocean ridges). This lesson plan was developed by , Portland Oregon. Students investigate how seismic waves travel through Earth's internal layers and bounce and bend at internal boundaries between mantle, outer core, and inner core.

Resource Type: Activities:Lab Activity, Classroom Activity
Grade Level: High School (9-12), Middle (6-8), College Lower (13-14)
Subject: Natural Hazards:Volcanism, Earthquakes, Geoscience, Technology, Seismology
EarthScope Geophysics Data: Data: Data:Seismic
Special Interest: Data, models, or simulations, Hazards

Alaska GPS Analysis of Plate Tectonics and Earthquakes
Beth Pratt-Sitaula, EarthScope
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.

Resource Type: Activities:Classroom Activity, Lab Activity
Grade Level: High School (9-12), Middle (6-8), College Lower (13-14)
Subject: Geodesy, Natural Hazards:Earthquakes, Geoscience, Engineering
EarthScope Geophysics Data: Data: Data:GPS/GNSS, Geophysics GPS/GNSS
Special Interest: Quantitative, Hazards, Data, models, or simulations, Process of Science, Spatial Thinking
Quantitative Skills: Vectors and Matrices, Graphs
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Pasta Quake: Exploring Earthquake Magnitude
Paul Doherty (Exploratorium Teacher Institute) and Roger Groom (Mt Tabor Middle School) with improvements by ShakeAlert
This short activity provides an intuitive introduction to earthquake magnitude using an everyday item--spaghetti. Learners are introduced to the earthquake magnitude scale by breaking different amounts of uncooked noodles. Visual scale of the pasta emphasizes the relative differences between magnitudes with each whole step in magnitude. For older students, the demonstration helps students understand why seismologists use the nonlinear logarithmic scale to best graph the huge range of quantities.

Resource Type: Activities:Outreach Activity, Classroom Activity, Lab Activity
Grade Level: College Lower (13-14), High School (9-12), Intermediate (3-5), Middle (6-8)
Subject: Geoscience, Seismology, Natural Hazards:Earthquakes
Special Interest: Quantitative, Hazards, Data, models, or simulations
Quantitative Skills: Arithmetic/Computation

Exploring Tectonic Motions with GPS
Shelley E Olds, EarthScope Consortium
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change 

Resource Type: Activities:Classroom Activity, Lab Activity
Grade Level: College Lower (13-14), Middle (6-8), High School (9-12)
Subject: Natural Hazards:Earthquakes, Natural Hazards, Geodesy, Tectonics
EarthScope Geophysics Data: Data: Data:GPS/GNSS, Geophysics GPS/GNSS
Special Interest: Quantitative, Hazards, Process of Science, Data, models, or simulations
Quantitative Skills: Vectors and Matrices
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

USArray Seismic Wave Visualizations: Educator Information
These animations show how the ground responds when seismic waves from worldwide earthquakes sweep across more than 400 sensitive seismograph stations of (USArray), the seismologic component of EarthScope. Each animation has a map of the active USArray grid at the time of the earthquake. These animations are a creative use of the data being received by this unusually dense array of monitoring stations that were deployed as a means to "image" the roots of our continent.

Resource Type: Audio/Visual:Animations/Video, Images/Illustrations
Grade Level: College Lower (13-14), Middle (6-8), High School (9-12)
Subject: Natural Hazards:Earthquakes, Geoscience, Seismology
EarthScope Geophysics Data: Data: Data:Seismic
Special Interest: Data, models, or simulations, Hazards