GETSI - GEodesy Tools for Societal Issues

The GETSI teaching materials feature geodetic data and quantitative skills applied to societally important issues (climate change, natural hazards, water resources, etc.). These materials were designed and developed by teams of faculty and content experts, underwent rigorous review and classroom testing, and are ready for use in your classroom.

Teaching Materials Available Now

Greenland GPS Network (GNET) station
Ice mass and sea level changes (Introductory level)
Becca Walker (Mt. San Antonio College)
Leigh Stearns (University of Kansas)

In this 2-3 week module, students interpret geodetic data from Greenland to assess spatial patterns and magnitudes of ice mass change and consider mechanisms and timescales for ice mass loss. They also investigate the relationship between ice mass change and global and regional sea level, with an emphasis on the ongoing and future implications of sea level change on civilization. Materials for student reading and preparation exercises, in-class discussions, lab exercises, small group activities, gallery walks, and wall walks are provided, as well as teaching tips and suggestions for modifications for a variety of class formats.

San Andreas Fault LIDAR
Imaging Active Tectonics with InSAR and LiDAR data (Majors level)
Bruce Douglas (Indiana University)
Gareth Funning (University of California Riverside)

This module focuses on the integration of new and emerging geodetic data sets that have revolutionized our ability to understand the processes and fault parameters that control the particular characteristics of a given earthquake. As such, the units provide insight into the fundamentals of fault behavior and the geological record of this behavior as manifest in the geomorphology of the land surface (tectonic geomorphology). Through analysis of this tectonic landscape, students will develop an appreciation that this subject area requires 4-D thinking that is spatial, and temporal considerations as repeated events on a single fault are recorded in the evolution of the surface topography. Additionally, earthquakes have a direct impact on humans through the potential disruption of societal support infrastructure, and the magnitude and location of this disruption can be determined. The module units can be used individually or integrated into traditional laboratory exercises on faults and fault properties and geometries as well as strain analysis that records ongoing deformation. Finally, the module exposes students to a number of digital tools already common at the professional level, including those used to perform modeling of an earthquake.

Learn More about the GETSI Teaching Materials »

Find other geodesy teaching resources on NAGT's Teaching Geodesy site »

In Development

GPS, Strain, and Earthquakes (Majors level): in transfer and testing (beta-version available from UNAVCO)
Authored by Vince Cronin (Baylor University) and Phil Resor (Wesleyan University) with technical support from William Hammond and Corne Kreemer (University of Nevada Reno)

Analyzing High Resolution Topography with TLS and SfM (Majors level): in transfer and testing (beta-version available from UNAVCO)
Authored by Bruce Douglas (Indiana University), Kate Shervais (UNAVCO), and Chris Crosby (UNAVCO)

Measuring Water Resources with GPS, Gravity, and Traditional Methods (Majors level): in testing and revision
Authored by Bruce Douglas (Indiana University) and Eric Small Tilton (University of Colorado)

Surface Process Hazards (Introductory level): in development & testing
Authored by Becca Walker (Mt. San Antonio College) and Sarah Hall (College of the Atlantic)

If you have questions about the project, please contact

      Next Page »