Search SERC
Information Type Show all
- Lab Activity 7 matches
Activity
59 matches General/OtherSubject
Location Show all
- CURE Collection 34 matches
- Institutes 25 matches
CUREnet
Results 1 - 10 of 59 matches
An Arabidopsis Mutant Screen CURE for a Cell and Molecular Biology Laboratory Course part of CUREnet:CURE Collection
This CURE is designed from a crucial component of a chloroplast lipid signaling research project and has been implemented for a cell and molecular biology laboratory course at Michigan State University. The research laboratory generated an engineered plant line producing a lipid-derived plant hormone and mutagenized this line. The research question is "what transporters or receptors are involved in the hormone signaling transduction or perception processes?". Students form research hypotheses based on the research model, design experiments, perform experiments, collect and analyze data, make scientific arguments, and share their findings with the learning community. Specifically, the students culture the mutagenized plant population and select the desired mutant phenotypes, followed by genotyping the mutants and characterizing the mutants by basic biochemical approaches. Mathematics is also integrated into the course design. As the students studied the relevant genetic, molecular and biochemical concepts during this CURE, they use the core idea of information flow and data they generate in the lab to make claims about their mutant plants and support these claims with evidence and reasoning.
See the activity page for details.
Biomass conversion into highly useful chemicals part of CUREnet:Institutes:Alabama State University:Examples
This is CURE based course that aims at bridging the gap between theoretical knowledge in chemistry and its practical applications at solving real-world problems. It gives students an opportunity to construct and synthesize their knowledge and skills by learning to apply theoretical knowledge to practice by the laboratory research. The purpose of this course is to acquaint students with the fundamental concepts of chemistry, synthetic methods and techniques. The emphasis will be on novel catalysts synthesis and evaluating their activity towards biomass conversion to liquid fuel and useful chemicals. Students will design synthesize, deduce identities of the biomass conversion products from chemical and spectral clues, and predict reaction products.
See the activity page for details.
Population & Community Ecology part of CUREnet:CURE Collection
Students in a Population and Community Ecology class participate in coastal marine research focused on understanding factors determining population sizes and community interactions, particularly in the context of species that appear to be shifting their ranges with climate change. Students participate in all aspects of the research from making observations and collecting data in the field to defining questions, stating hypothesis, designing and completing statistical analysis, and interpreting and presenting results. The outcomes are a research proposal, research paper, and poster presentation. All are intended to be at a level appropriate for use as a writing sample or presentation at undergraduate conferences. Results are incorporated into the ongoing research project led by the course instructor and graduate student teaching assistant.
Learn more about this review process.
Molecular Parasitology part of CUREnet:CURE Collection
In Spring 2021, we piloted a mini-CURE where student groups from University of Mary Washington and Georgia State University collaboratively completed research projects as part of a research-intensive course on Molecular Parasitology. The benefits of this approach were immediately obvious as students interacted across institutions, learned from each other's disciplinary expertise while informing their own research with data collected by their collaborators.
See the activity page for details.
Community Flood Risk Assessment from Rising/Surging Seas Project part of CUREnet:Institutes:Other Institutes (2019-2020):Examples
Globally 634 million people, 10% of the world's population, live in coastal areas less than 10 meters above sea level. According to 2010 census data, 123 million people, 39% of the United States population, live in coastal counties with an estimated increase to this number by 8% in the 2020 census. As natural disasters have been seen to increase in frequency and severity in the past five years coupled with expected sea rises from climate change it is important that anyone involved with the safety and resiliency planning of their organization/community have an understanding of how to scientifically assess risk from flooding in order to mitigate and recover from the effects. This project allows students the ability to develop skills to utilize computer modeling systems and to apply the data to real world communities in examining risk to structures as well as different groups in the community.
See the activity page for details.
MCC: Malate Dehydrogenase CUREs Community part of CUREnet:CURE Collection
The Malate Dehydrogenase CUREs Community (MCC) project is designed to facilitate the adoption of effective, protein‐centric, Course Based Undergraduate Research Experiences (CUREs) into teaching labs at a wide variety of undergraduate serving institutions. (Primarily Undergraduate Institutions, Research Intensive Universities and Community Colleges) MCC coordinates and conducts pedagogical research into two major features of CUREs:1) their duration (whole semester versus 5‐6 week modules incorporated into a lab class), and 2) the impact of scientific collaboration between institutions (a key aspect of much modern research). Using validated assessment tools we seek to establish their effects on student confidence, persistence in STEM, and ability to design research experiments and interprete data. To facilitate faculty adoption of CURE approaches the project provides a number of resources. These focus on a variety of research areas related to Malate Dehydrogenase including mechanisms of catalysis and regulation, adaptation and evolution, cofactor specificity, folding and stability and interactions in metabolons. Resources include biologics, experimental protocols and assessment tools. The project also coordinates interactions between courses at different institutions to allow incorporation of scientific collaboration into CUREs. These collaborations also facilitate the use of more sophisticated experimental approaches and broaden the experimental scope of the CUREs.
Analyzing datasets in ecology and evolution to teach the nature and process of science part of CUREnet:CURE Collection
This quarter-long project forms the basis of a third-year course for majors and nonmajors at the University of Washington, Bothell called Science Methods and Practice. Students use databases to identify novel research questions, and extract data to test their hypotheses. They frame the question with primary literature, address the questions with inferential statistics, and discuss the results with more primary literature. The product is a scientific paper; each step of the process is scaffolded and evaluated. Given time limitations, we avoid devoting time to data collection; instead, we sharpen students' ability to make sense of a large body of quantitative data, a situation they may rarely have encountered. We treat statistics with a strictly conceptual, pragmatic, and abbreviated approach; i.e., we ask students to know which basic test to choose to assess a linear relationship vs. a difference between two means. We stress the need for a normal distribution in order to use these tests, and how to interpret the results; we leave the rest for stats courses, and we do not teach the mathematics. This approach proves beneficial even to those who have already had a statistics course, because it is often the first time they make decisions about applying statistics to their own research questions. We incorporate peer review and collaborative work throughout the quarter. We form collaborative groups around the research questions they ask, enabling them to share primary literature they find, and preparing them well to review each other's writing. We encourage them to cite each other's work. They write formal peer reviews of each other's papers, and they submit their final paper with a letter-to-the-editor highlighting how their research has addressed previous feedback. A major advantage of this course is that an instructor can easily modify it to suit any area of expertise. Students have worked with data about how a snail's morphology changes in response to its environment (Price, 2012), how students understand genetic drift (Price et al. 2014), maximum body size in the fossil record (Payne et al. 2008), range shifts (Ettinger et al. 2011), and urban crop pollination (Waters and Clifford 2014).
The Art of Microbiology: an Agar Art Microbiology Lab CURE part of CUREnet:CURE Collection
Students use agar art made with freshly isolated microbes as a source for developing their own novel research projects.
Exploring eukaryotic protein structure and post-translational modifications. part of CUREnet:Institutes:Bowie State University:Examples
This CURE will provide opportunity for students to think and act as researchers by using computational, biochemical, and bioanalytical techniques to examine tick antigen proteins. The CURE is designed as a lab for upper-level students who are taking or have taken a one-semester introductory biochemistry course, but two semesters would be even better. It could also be adapted for cell/molecular biology or (bio) analytical chemistry instrumentational analysis labs. It has been taught for classes ranging from 12-24 students. Ticks are notorious vectors of viral, protozoan, and bacterial diseases, including Lyme disease. While an anti-vector vaccine capable of protecting people from diseases transmitted by a particular tick species is an alluring goal, only one such anti-tick vaccine is currently available. This vaccine targets Bm86, a protein from the midgut of Rhipicephalus microplus, a cattle tick. Not only does the vaccine limit parasitism of the cattle by ticks, data suggests that it can also prevent transmission of tick-borne diseases including bovine anaplasmosis and babesiosis. However, similar vaccination approaches have not succeeded thus far against ticks that transmit diseases to humans, and little is known about the antibody response to the antigen, or about the protein itself. Since the protein's structure and function are unknown, the research goal of this CURE is to purify Bm86 using an insect cell/baculovirus expression system and characterize it, including domain structure and post-translational modifications (glycosylation sites). There are homologs to Bm86 in every sequenced tick species examined, and future CUREs will characterize some of the homologs including those in Ixodes scapularis, the tick that is mainly responsible for transmitting Lyme in the eastern US, and Haemaphysalis longicornis, the Asian longhorned tick, a newly-discovered invasive species in the area that also has significant disease-transmitting potential. By understanding the structure and post-translational modifications of this protein, we hope to gain a better understanding of how to make effective anti-tick vaccines, including those for humans, that may prevent transmission of Lyme disease. Importantly, the basic parameters of this CURE can be used to examine other proteins besides tick antigens. For example, during the pandemic, the CURE pivoted from the tick antigen to the SARS-CoV-2 nucleocapsid protein, which was also expressed in an insect cell system. Instead of characterizing glycosylation sites, we characterized phosphorylation sites. It's therefore possible to use this same framework for many different eukaryotic proteins that may be of research interest.
See the activity page for details.
Design2Data part of CUREnet:Institutes:Other Institutes (2019-2020):Examples
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.