Examples
Subject: Geoscience
Results 1 - 10 of 47 matches
Just How Faithful is Old Faithful? Finding Order in Random Behavior part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum/Geology of National Parks Collection. Students create a histogram to examine the time between geyser eruptions of Old Faithful, Yellowstone National Park.
Glacier (?) National Park part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum/Geology of National Parks module. Students examine data about the disappearing glaciers in the park; after calculating percentage change in the number of glaciers from 1850 to 2000, they interpolate to estimate when Grinnell glacier will be gone.
Carbon Sequestration in Campus Trees part of Spreadsheets Across the Curriculum:General Collection:Examples
Spreadsheets Across the Curriculum module. Students use allometric relationships to calculate tree mass from trunk diameter in a stand of trees in the Pacific Northwest.
From Isotopes to Temperature: Working With A Temperature Equation part of Spreadsheets Across the Curriculum:General Collection:Examples
Spreadsheets Across the Curriculum module. Students build a spreadsheet to examine from a dataset the relation between oxygen isotopes in corals and the temperature of surrounding seawater.
Nitrate Levels in the Rock Creek Park Watershed, Washington DC, 1: Measures of Central Tendency part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students examine the histogram of a positively skewed data set and calculate its mean, median and mode.
Tale of Two Cities (and two hurricanes): New Orleans part of Environmental Geology:Activities
This is an activity that uses the spreadsheet program Excel to explore the origins of subsidence in New Orleans. There are two versions. The first is a traditional Spreadsheets Across the Curriculum (SSAC) module ...
How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.
What is the Volume of a Debris Flow? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to estimate the volume of volcanic deposits using map, thickness and high-water mark data from the 2005 Panabaj debris flow (Guatemala).
What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.
Porosity and Permeability of Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.