Elementary and Middle School (K-8) Activity Browse



Search for activities specifically designed for K-8 education. Refine this search by either clicking on the terms in boxes to the right or typing a term into the search box below. Activities include a description, background information, and necessary student documents.




Current Search Limits:
College Lower (13-14)

Results 21 - 40 of 124 matches

Mapping Plate Tectonic Boundaries part of Teach the Earth:Teaching Activities
In this classroom activity, students will work in groups to observe how patterns of topography, bathymetry, earthquake locations and depths, and the location of volcanoes vary across regions of the Earth. They will ...

Episodic tremor and slip: The Case of the Mystery Earthquakes | Lessons on Plate Tectonics part of Geodesy:Activities
Earthquakes in western Washington and Oregon are to be expected—the region lies in the Cascadia Subduction Zone. Offshore, the Juan de Fuca tectonic plate subducts under the North American plate, from northern California to British Columbia. The region, however, also experiences exotic seismicity— Episodic Tremor and Slip (ETS).In this lesson, your students study seismic and GPS data from the region to recognize a pattern in which unusual tremors--with no surface earthquakes--coincide with jumps of GPS stations. This is ETS. Students model ductile and brittle behavior of the crust with lasagna noodles to understand how properties of materials depend on physical conditions. Finally, they assemble their knowledge of the data and models into an understanding of ETS in subduction zones and its relevance to the millions of residents in Cascadia.

Where on Earth were the reefs through geologic time? part of Teach the Earth:Teaching Activities
Students explore the geographic distribution of reefs through geologic time. Students map fossil occurrences of reef forming organisms on modern and paleogeographic reconstructions using the Paleobiology Database. ...

Be Smart, Be Prepared! Planning an Emergency Backpack part of EarthScope ANGLE:Educational Materials:Activities
Participants learn what to do before, during, and after a potentially damaging earthquake. They brainstorm valuable components for an emergency supplies backpack and then present on their ideas. The primary resource is the booklet Are you prepared for the next big EARTHQUAKE in Alaska?

Alaska Earthquake Hazard Inventory & Mitigation Planning part of EarthScope ANGLE:Educational Materials:Activities
In this two-part activity, students/participants first: - Complete a Hazard Inventory for their city or area of interest in the event of a magnitude 7 or larger earthquake and tsunami. - Identify what critical structures and infrastructure will be affected. Then: - Write a summary statement assessing strengths and vulnerabilities of essential services or infrastructure. - Propose actions for mitigating vulnerabilities. - Create an Action Plan to address identified needs.

Tsunami Vertical Evacuation Structures (TVES) part of EarthScope ANGLE:Educational Materials:Activities
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution for communities with high ground too far away for rapid evacuation. Students then apply basic design principles for TVES and make their own scale model that they think would fit will in their target community. Activity has great scope for both technical and creative design as well as practical application of math skills. Examples are from the Pacific Northwest, USA's most tsunami-vulnerable communities away from high ground, but it could be adapted to any region with similar vulnerability.

SeismicWaves Viewer & SeismicEruption Software part of EarthScope ANGLE:Educational Materials:Activities
This activity includes both the Seismic Waves Viewer and the Seismic Eruption software to help learners better understand earthquakes, volcanoes, and the structure of the Earth. Seismic Waves is a browser-based tool to visualize the propagation of seismic waves from historic earthquakes through Earth's interior and around its surface. By carefully examining these seismic wave fronts and their propagation, the Seismic Waves tool illustrates how earthquakes can provide evidence that allows us to infer Earth's interior structure. Seismic Eruption shows seismicity (earthquakes) and volcanic activity in space and time from 1960 to present. When the program is running, the user sees lights, which represent earthquakes, flashing on the screen in speeded-up time. The user can control the speed of the action. In addition, the program can show seismicity under Earth's surface in three-dimensional and cross-sectional views. Earthquakes can be selected by magnitude and volcanic eruptions can be selected by volcanic explosivity index. In this way, large earthquakes and large eruptions can be selected to emphasize how different types of plate boundaries are characterized by different magnitudes of earthquakes (e.g. no major or great earthquakes occur on spreading ocean ridges). This lesson plan was developed by , Portland Oregon. Students investigate how seismic waves travel through Earth's internal layers and bounce and bend at internal boundaries between mantle, outer core, and inner core.

Build a Better Wall part of EarthScope ANGLE:Educational Materials:Activities
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.

Pasta Quake: Exploring Earthquake Magnitude part of EarthScope ANGLE:Educational Materials:Activities
This short activity provides an intuitive introduction to earthquake magnitude using an everyday item--spaghetti. Learners are introduced to the earthquake magnitude scale by breaking different amounts of uncooked noodles. Visual scale of the pasta emphasizes the relative differences between magnitudes with each whole step in magnitude. For older students, the demonstration helps students understand why seismologists use the nonlinear logarithmic scale to best graph the huge range of quantities.

Yes Sir, That's My Baby Glacier! part of Teach the Earth:Teaching Activities
Students will create their own glacier, and explore their effect on the land, modeling how they melt, how they move, and erode and deposit sediment. Students will be able to determine and describe isostatic ...

Discovering Plate Boundaries part of NAGT:Our Resources:Teaching Resources:Teaching Materials Collection
Students work collaboratively using data maps to discover plate tectonic boundary processes. Data sets used are earthquakes, volcanos, seafloor age, and topography. Show other versions of this activity Hide The ...

Renewable Energy Virtual Field Trip part of Teach the Earth:Teaching Activities
This is a virtual field trip on the subject of renewable energy. The Google Earth slideshow will take you around the world to different key renewable energy sites across the world. Each site will have a quick ...

Water Optimism - focusing on solutions for the hydrosphere in a take-home final exam part of Teach the Earth:Teaching Activities
This take-home final exam asks students to demonstrate their improved skills in searching for sources (information literacy) and writing on freshwater science/society/policy intersections (science literacy), and ...

Getting Started with the ShakeNet Data Portal part of EarthScope ANGLE:Educational Materials:Activities
Teacher guide and tutorial for using the RaspberryShake ShakeNet data portal.

Tsunami Early Warning Demonstration part of Geodesy:Activities
This hands-on demonstration illustrates how instruments can be used to warn people of a tsunami. The same principles can be applied to earthquake early warning. With an older audience, this is a demonstration that can be used to start a conversation. With a younger audience, this activity is a game.

Pinpointing Location with GPS Demonstration: How GPS Works (Part 2) part of Geodesy:Activities
Using string, bubble gum, and a model of a GPS station, demonstrate how GPS work to pinpoint a location on Earth.Precisely knowing a location on Earth is useful because our Earth's surface is constantly changing from earthquakes, volcanic eruptions, tectonic plate motion, landslides, and more. Thus, scientists can use positions determined with GPS to study all these Earth processes.

Earthquake Early Warning Demonstration part of Geodesy:Activities
This hands-on demonstration illustrates how GPS instruments can be used in earthquake early warning systems to alert people of impending shaking. The same principles can be applied to other types of early warning systems (such as tsunami) or to early warning systems using a different type of geophysical sensor (such as a seismometer instead of a GPS).This demo is essentially a game that works best with a large audience (ideally over 30 people) in an auditorium. A few people are selected to be either surgeons, GPS stations, or a warning siren, with everyone else forming an earthquake "wave."

Identifying Tsunami Sand in Salt Marsh Stratigraphy part of Teach the Earth:Teaching Activities
Through a hands-on activity using salt marsh sediment cores from Pacific Northwest estuaries, students will learn how these environments record the history of earthquakes and tsunami. Students will analyze the ...

Science with Flubber: Glacial Isostasy part of Geodesy:Activities
Using two sets of flubber, one representing the Earth and one representing a glacier, demonstrate how the crust sinks and rebounds to the weight of a glacier, and how this motion can be measured using GPS.Flubber is a rubbery elastic substance, a non-Newtonian elasco-plastic fluid, that flows under gravity, but breaks when under high stress. Flubber is useful for demonstrating a wide range of Earth and glacier processes.

Investigating Factors That Affect Tsunami Inundation part of EarthScope ANGLE:Educational Materials:Activities
Learners modify elements of a tsunami wave tank to investigate the affect that near-coast bathymetry (submarine topography) and coastal landforms have on how far a tsunami can travel inland. Damaging tsunami are most commonly produced by subduction zone earthquakes, such as those that occur in Alaska.