InTeGrate Modules and Courses >Water Science and Society > Student Materials > Module 8: Cities in Peril: Dealing With Water Scarcity > Module 8.2: Cities in Peril: Future climate change, population growth, and water issues > Water use, water stress and population growth
InTeGrate's Earth-focused Modules and Courses for the Undergraduate Classroom
showLearn More
These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »
show Download
The student materials are available for offline viewing below. Downloadable versions of the instructor materials are available from this location on the instructor materials pages. Learn more about using the different versions of InTeGrate materials »

Download a PDF of all web pages for the student materials

Download a zip file that includes all the web pages and downloadable files from the student materials

For the Instructor

These student materials complement the Water Science and Society Instructor Materials. If you would like your students to have access to the student materials, we suggest you either point them at the Student Version which omits the framing pages with information designed for faculty (and this box). Or you can download these pages in several formats that you can include in your course website or local Learning Managment System. Learn more about using, modifying, and sharing InTeGrate teaching materials.
Initial Publication Date: March 31, 2017

Water use, water stress and population growth

Module 1 discussed the who, how and where of water use throughout the US and the world. In the US and most industrialized countries, the dominant water uses are industry and agriculture. Domestic and municipal water use typically comprises only 15-30% of water use. In developing countries, per capita water use tends to be lower in general, with a smaller proportion dedicated to industrial use and a larger proportion dedicated to domestic uses (see Module 1, Figures 8 and 9).

It is also useful to remember that we don't actually see most of the water needed to sustain our daily activities. In the US, average per capita 'direct' use of water (domestic or municipal, for watering your yard, taking a shower, flushing the toilet, etc.) is 156 gallons per day, but the per capita 'indirect' use of water (including water used for energy production, manufacturing, food production, etc.) is 1230 gallons per day. So we really only ever see about 12% of the water that is used to sustain our quality of life. This 'invisibility' (as Charles Fishman refers to it in "The Big Thirst") of our dependency on clean, reliable water is one of the challenges in planning for the future. Often we're not even aware of what we stand to lose!

Population growth was also discussed in module 1. The population is expected to grow by nearly a third of what it is today, to around 9.6 billion by 2050. For an engaging look at population increase in real time, see the US Census Bureau Population Clock. It is all the more concerning that some of the most rapid population growth in the world (India and Africa) is expected to occur in places that are already experiencing water stress. Add to this the legacies of past policies and infrastructure as well as future projections of climate change and it seems that we have a lot of work and planning to do!


These materials are part of a collection of classroom-tested modules and courses developed by InTeGrate. The materials engage students in understanding the earth system as it intertwines with key societal issues. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.
Explore the Collection »