Jim Washburne: Using in Introduction to Critical Zone Science at The University of Arizona
About this Course
Upper level undergraduate/graduate; variety of majors/non-majorsSyllabus (Microsoft Word 2007 (.docx) 48kB Apr12 17)
A Success Story in Building Student Engagement
I taught a small (8 person) mixed 400/500 level seminar course called Introduction to Critical Zone Science so the students were a mix of upper class undergraduates and graduates. Some of my students had prior experience (internships/RA's) with the actual Critical Zone research teams on campus so brought (and shared) their advanced but unique experiences with the class. Despite or perhaps because of their advanced level, most students had only been exposed to a narrow range of ideas relative to the big picture of critical zone integrated systems.
My Experience Teaching with InTeGrate Materials
One technique we used to digest a large number of scientific readings was to break the class into small groups and have each group make a short (5-minute report) summarizing the reading for the rest of the class. Students reported that this repeated practice of short and focused assignments, helped improve their overall comfort and confidence in making classroom presentations.Relationship of InTeGrate Materials to my Course
My module or unit on atmospheric fluxes of energy and carbon represents a two-week segment of this 15-week course sequence. It represented the first largely technical section after a couple of introductory modules. I think this module does a great job of introducing students to cross-CZO and multisite data comparisons. Not only do we encourage students to explore the CZO database but we also expose them to the Ameriflux database.
Assessments
This module uses three forms of assessments. To get started, guided worksheets provide the structure students need to engage in the module. Next, students explore a variety of graphical data sets drawn from many different environments. The goal is to identify and focus on the main features of the graphs (or sites) rather than secondary effects or artifacts of incomplete data. Finally, students are asked to locate and graph data from areas of interest to them at both annual and daily time scales. The latter activity is quite challenging for students, who may not have had to graph data sets with 17,520 rows and 30 columns. Another challenge appears to be dealing with datasets that may contain many "Missing Data" values.Outcomes
Energy and carbon fluxes and balances are a fundamental and oftentimes defining characteristic of a critical zone site. My goal was to show students how they might explore this data on their own and how to interpret it. Students uniformly became better flux-data analysists but many continued to have difficulty graphing the data on their own.Overall, most students experienced a significant aha moment during the course when they finally understood how their research or expertise was part of and fit into the broader, integrated CZ science system.