CURE Collection
Browse through the collection of CUREs that have been submitted by community members. You can use the faceted search at the right to narrow the view of the collection. You can also use the free text search at any time.Contribute a CURE to the Collection »
Discipline
Core Competencies
- Asking questions (for science) and defining problems (for engineering) 37 matches
- Developing and using models 15 matches
- Planning and carrying out investigations 39 matches
- Analyzing and interpreting data 44 matches
- Using mathematics and computational thinking 20 matches
- Constructing explanations (for science) and designing solutions (for engineering) 26 matches
Nature of Research
State
- Alabama 3 matches
- California 3 matches
- Colorado 3 matches
- Georgia 3 matches
- Illinois 1 match
- Maryland 6 matches
- Massachusetts 2 matches
- Michigan 2 matches
- Missouri 1 match
- New Hampshire 1 match
- New York 2 matches
- North Carolina 2 matches
- Oklahoma 1 match
- Oregon 1 match
- Pennsylvania 2 matches
- Rhode Island 3 matches
- Texas 2 matches
- Virginia 3 matches
- Washington 1 match
Target Audience
Results 1 - 10 of 59 matches
An Arabidopsis Mutant Screen CURE for a Cell and Molecular Biology Laboratory Course
Jinjie Liu, Michigan State University
This CURE is designed from a crucial component of a chloroplast lipid signaling research project and has been implemented for a cell and molecular biology laboratory course at Michigan State University. The research laboratory generated an engineered plant line producing a lipid-derived plant hormone and mutagenized this line. The research question is "what transporters or receptors are involved in the hormone signaling transduction or perception processes?". Students form research hypotheses based on the research model, design experiments, perform experiments, collect and analyze data, make scientific arguments, and share their findings with the learning community. Specifically, the students culture the mutagenized plant population and select the desired mutant phenotypes, followed by genotyping the mutants and characterizing the mutants by basic biochemical approaches. Mathematics is also integrated into the course design. As the students studied the relevant genetic, molecular and biochemical concepts during this CURE, they use the core idea of information flow and data they generate in the lab to make claims about their mutant plants and support these claims with evidence and reasoning.
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Wet Lab/Bench Research, Basic Research
State: Michigan
Target Audience: Introductory
CURE Duration: A full term
See the activity page for details.
Biomass conversion into highly useful chemicals
SAPNA JAIN, Alabama State University
This is CURE based course that aims at bridging the gap between theoretical knowledge in chemistry and its practical applications at solving real-world problems. It gives students an opportunity to construct and synthesize their knowledge and skills by learning to apply theoretical knowledge to practice by the laboratory research. The purpose of this course is to acquaint students with the fundamental concepts of chemistry, synthetic methods and techniques. The emphasis will be on novel catalysts synthesis and evaluating their activity towards biomass conversion to liquid fuel and useful chemicals. Students will design synthesize, deduce identities of the biomass conversion products from chemical and spectral clues, and predict reaction products.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations
Nature of Research: Applied Research
State: Alabama
See the activity page for details.
Population & Community Ecology
Cascade Sorte, University of California-Irvine
Students in a Population and Community Ecology class participate in coastal marine research focused on understanding factors determining population sizes and community interactions, particularly in the context of species that appear to be shifting their ranges with climate change. Students participate in all aspects of the research from making observations and collecting data in the field to defining questions, stating hypothesis, designing and completing statistical analysis, and interpreting and presenting results. The outcomes are a research proposal, research paper, and poster presentation. All are intended to be at a level appropriate for use as a writing sample or presentation at undergraduate conferences. Results are incorporated into the ongoing research project led by the course instructor and graduate student teaching assistant.
Core Competencies: Analyzing and interpreting data, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Applied Research, Basic Research, Field Research
State: California
Target Audience: Upper Division, Non-major, Major
CURE Duration: A full term
Learn more about this review process.
Molecular Parasitology
Swati Agrawal, University of Mary Washington
In Spring 2021, we piloted a mini-CURE where student groups from University of Mary Washington and Georgia State University collaboratively completed research projects as part of a research-intensive course on Molecular Parasitology. The benefits of this approach were immediately obvious as students interacted across institutions, learned from each other's disciplinary expertise while informing their own research with data collected by their collaborators.
Core Competencies: Developing and using models, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations
Nature of Research: Basic Research, Wet Lab/Bench Research, Applied Research
State: Virginia
Target Audience: Major, Upper Division
CURE Duration: A full term
See the activity page for details.
Community Flood Risk Assessment from Rising/Surging Seas Project
Kevin Kupietz, Elizabeth City State University
Globally 634 million people, 10% of the world's population, live in coastal areas less than 10 meters above sea level. According to 2010 census data, 123 million people, 39% of the United States population, live in coastal counties with an estimated increase to this number by 8% in the 2020 census. As natural disasters have been seen to increase in frequency and severity in the past five years coupled with expected sea rises from climate change it is important that anyone involved with the safety and resiliency planning of their organization/community have an understanding of how to scientifically assess risk from flooding in order to mitigate and recover from the effects. This project allows students the ability to develop skills to utilize computer modeling systems and to apply the data to real world communities in examining risk to structures as well as different groups in the community.
Core Competencies: Developing and using models, Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data
Nature of Research: Applied Research
State: North Carolina
Target Audience: Major, Non-major, Upper Division
CURE Duration: A full term
See the activity page for details.
BASIL (Biochemistry Authentic Scientific Inquiry Laboratory)
Arthur Sikora, Nova Southeastern University; Rebecca Roberts, Ursinus College
This curriculum from the BASIL (Biochemistry Authentic Scientific Inquiry Laboratory) biochemistry consortium aims to get students to transition from thinking like students to thinking like scientists. Students will analyze proteins with known structure but unknown function using computational analyses and wet-lab techniques. BASIL is designed for undergraduate biochemistry lab courses, but can be adapted to first year (or even high school) settings, as well as upper-level undergraduate or graduate coursework. It is targeted to students in biology, biochemistry, chemistry, or related majors. Further details about the BASIL biochemistry consortium can be found on the BASIL blog, http://basiliuse.blogspot.com/ The curriculum is flexible and can be adapted to match the available facilities, the strengths of the instructor and the learning goals of a course and institution. These lessons are often used as part of upper-level laboratory coursework with at least one semester of biochemistry as a pre-requisite or co-requisite. The lab has been designed for classes ranging from 10-24 students (working in teams of two or three) per lab section. This lesson can be adapted to laboratory courses for introductory biology, cell and molecular biology, or advanced biology labs.
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: New York
Target Audience: Upper Division, Major
CURE Duration: Multiple terms, A full term
Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.
Core Competencies: Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering), Analyzing and interpreting data, Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering), Developing and using models
Nature of Research: Wet Lab/Bench Research, Basic Research, Applied Research
Target Audience: Upper Division, Non-major, Major, Introductory
CURE Duration: A full term, Multiple terms
Synthesis of the Intermediate of a Catalytic Reaction: An NHC-Stabilized, First-Row Transition Metal Complex
Meng Zhou, Lawrence Technological University
The advanced synthesis laboratory course object allows students to study the synthesis, purification, and characterizations of a new diamagnetic organometallic complex of a first-row transition metal. The air-stable complex is stabilized by an N-heterocyclic carbene spectator ligand. It also bears an actor ligand and therefore, is potentially a reactive intermediate of a catalytic reaction. The synthesis of a reactive intermediate is the key to elucidate the mechanism of catalysis. The instructor chooses the first-row transition metal and the actor ligand based on his or her interests. The CURE starts from an NHC-ligated complex that does not bear this actor ligand but is otherwise similar. In our CURE, an anion ligand-replacement reaction was used to install the actor ligand, but an instructor may choose other approaches. The students will evaluate their results by standard spectroscopic analyses using UV-vis, FT-IR, and proton NMR (60 MHz or above) analysis.
Nature of Research: Wet Lab/Bench Research, Basic Research
State: Michigan
Target Audience: Major, Upper Division
CURE Duration: A few class periods
See the activity page for details.
Analyzing datasets in ecology and evolution to teach the nature and process of science
Rebecca Price, University of Washington-Tacoma Campus
This quarter-long project forms the basis of a third-year course for majors and nonmajors at the University of Washington, Bothell called Science Methods and Practice. Students use databases to identify novel research questions, and extract data to test their hypotheses. They frame the question with primary literature, address the questions with inferential statistics, and discuss the results with more primary literature. The product is a scientific paper; each step of the process is scaffolded and evaluated. Given time limitations, we avoid devoting time to data collection; instead, we sharpen students' ability to make sense of a large body of quantitative data, a situation they may rarely have encountered. We treat statistics with a strictly conceptual, pragmatic, and abbreviated approach; i.e., we ask students to know which basic test to choose to assess a linear relationship vs. a difference between two means. We stress the need for a normal distribution in order to use these tests, and how to interpret the results; we leave the rest for stats courses, and we do not teach the mathematics. This approach proves beneficial even to those who have already had a statistics course, because it is often the first time they make decisions about applying statistics to their own research questions. We incorporate peer review and collaborative work throughout the quarter. We form collaborative groups around the research questions they ask, enabling them to share primary literature they find, and preparing them well to review each other's writing. We encourage them to cite each other's work. They write formal peer reviews of each other's papers, and they submit their final paper with a letter-to-the-editor highlighting how their research has addressed previous feedback. A major advantage of this course is that an instructor can easily modify it to suit any area of expertise. Students have worked with data about how a snail's morphology changes in response to its environment (Price, 2012), how students understand genetic drift (Price et al. 2014), maximum body size in the fossil record (Payne et al. 2008), range shifts (Ettinger et al. 2011), and urban crop pollination (Waters and Clifford 2014).
Core Competencies: Analyzing and interpreting data, Planning and carrying out investigations, Constructing explanations (for science) and designing solutions (for engineering), Asking questions (for science) and defining problems (for engineering)
Nature of Research: Basic Research
State: Washington
Target Audience: Non-major, Upper Division, Major
CURE Duration: A full term
Analysis of the effects of protein-protein interactions on signaling through a team-based undergraduate biochemistry laboratory course
Daniela Fera, Swarthmore College
We developed a research-based laboratory course centered on a biological problem involving the B-Raf kinase, specifically the mutant that is commonly found in melanomas. One of the major goals of the project for the students is to generate mutants to determine whether a particular region of the B-Raf protein is critical for the interaction with MEK kinase, a downstream target in the pathway. Students analyze the published B-Raf-MEK crystal structure and choose a mutation to generate in B-Raf or MEK that might alter the dissociation constant (KD) of the complex. They design primers, perform PCR to generate their desired mutant, transform and purify the resulting DNA, express the DNA in E. coli, and purify the protein, all before characterizing it. Characterizing the mutant proteins consist of performing basic pull-downs, western blots, spectroscopic absorbance assays, and biolayer interferometry for binding kinetics. Students also engage in group meeting presentations and journal clubs in which they discuss their work and related primary literature, respectively. Group meeting and journal club discussions provide a forum for students to come up with new ideas to analyze their results, or for future work. Students summarize key results in a final presentation and paper, and develop a research proposal based on their work. Data that students obtain from their mutants provide evidence of the importance of a binding region for B-Raf-MEK complex formation, as well as downstream phosphorylation events. Such data will inform future drug discovery programs, as well as form the foundation for students' work in the course the following year. Because working with mutants can result in unpredictable data and results, students sometimes have to adjust their protocols and repeat experiments. Thus, the CURE format of this course also gives students an opportunity to learn to troubleshoot when things do not work as expected, which helps them learn resiliency in science.
Core Competencies: Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering), Planning and carrying out investigations, Asking questions (for science) and defining problems (for engineering)
Nature of Research: Wet Lab/Bench Research, Basic Research, Informatics/Computational Research
State: Pennsylvania
Target Audience: Non-major, Upper Division, Major
CURE Duration: A full term, Multiple terms
See the activity page for details.