Search the Site


Results 1 - 10 of 99 matches

Engaging With Earthquake Hazard and Risk
Jennifer Pickering
This introductory activity engages learners in the study of earthquake hazards and the risk these hazards pose to humans in the communities in which we live. Learners will compare three maps of Anchorage, AK, depicting spatial information related to seismic hazards to generate questions about the factors that influence shaking intensity and damage to the built environment during earthquakes.

Exploring Tectonic Motions with GPS
Shelley E Olds, EarthScope Consortium
Learners study plate tectonic motions by analyzing Global Positioning System (GPS) data, represented as vectors on a map. By observing changes in vector lengths and directions, learners interpret whether regions are compressing, extending, or sliding past each other. To synthesize their findings, learners identify locations most likely to have earthquakes, and defend their choices by providing evidence based on the tectonic motions from the GPS vector and seismic hazards maps. Show more information on NGSS alignment Hide NGSS ALIGNMENT Disciplinary Core Ideas History of Earth: HS-ESS1-5 Earth' Systems: MS-ESS2-2 Earth and Human Activity: MS-ESS3-2, HS-ESS3-1 Science and Engineering Practices 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions Crosscutting Concepts 4. Systems and System Models 7. Stability and Change 

Volcano Monitoring with GPS: Westdahl Volcano Alaska
Maite Agopian, EarthScope; Beth Pratt-Sitaula, EarthScope
Learners use graphs of GPS position data to determine how the shape of Westdahl Volcano, Alaska is changing. If the flanks of a volcano swell or recede, it is a potential indication of magma movement and changing ...

Alaska GPS Analysis of Plate Tectonics and Earthquakes
Beth Pratt-Sitaula, EarthScope
This activity introduces students to high precision GPS as it is used in geoscience research. Students build "gumdrop" GPS units and study data from three Alaska GPS stations from the Plate Boundary Observatory network. They learn how Alaska's south central region is "locked and loading" as the Pacific Plate pushes into North America and builds up energy that will be released in the future in other earthquakes such as the 1964 Alaska earthquake.

Tsunami Vertical Evacuation Structures (TVES)
Bonnie Magura (Portland Public Schools), Roger Groom (Mt Tabor Middle School), and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program)
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution for communities with high ground too far away for rapid evacuation. Students then apply basic design principles for TVES and make their own scale model that they think would fit will in their target community. Activity has great scope for both technical and creative design as well as practical application of math skills. Examples are from the Pacific Northwest, USA's most tsunami-vulnerable communities away from high ground, but it could be adapted to any region with similar vulnerability.

Building Shaking —Variations of the BOSS Model
IRIS (Incorporated Research Institutions for Seismology), FEMA (Federal Emergency Management Administration), ShakeAlert, Chris Hedeen (Oregon City High School), and ANGLE Project
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.

Build a Better Wall
FEMA (Federal Emergency Management Administration) and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program). Improvements by ShakeAlert.
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.

Base Isolation for Earthquake Resistance
Larry Braile (Purdue University) and TOTLE (Teachers on the Leading Edge) Project
This document includes two activities related to earthquake base isolation. Learners explore earthquake hazards and damage to buildings by constructing model buildings and subjecting the buildings to ground vibration (shaking similar to earthquake vibrations) on a small shake table. Base isolation a powerful tool for earthquake engineering. It is meant to enable a building to survive a potentially devastating seismic impact through a proper initial design or subsequent modifications. The buildings are constructed by two- or three-person learner teams.

Alaska Earthquake Hazard Inventory & Mitigation Planning
Bonnie Magura (Portland Public Schools), CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program), and ANGLE Project
In this two-part activity, students/participants first: - Complete a Hazard Inventory for their city or area of interest in the event of a magnitude 7 or larger earthquake and tsunami. - Identify what critical structures and infrastructure will be affected. Then: - Write a summary statement assessing strengths and vulnerabilities of essential services or infrastructure. - Propose actions for mitigating vulnerabilities. - Create an Action Plan to address identified needs.

How Do We Know Where an Earthquake Originated?
Jeffrey Barker (Binghamton University) & Michael Hubenthal (IRIS)
Students use real seismograms to determine the arrival times for P and S waves and use these times to determine the distance of the seismic station from the earthquake. Seismograms from three stations are provided to determine the epicenter using the S – P (S minus P) method. Because real seismograms contain some "noise" with resultant uncertainty in locating arrival times of P and S waves, this activity promotes appreciation for uncertainties in interpretation of real scientific data.