CURE Collection

Browse through the collection of CUREs that have been submitted by community members. You can use the faceted search at the right to narrow the view of the collection. You can also use the free text search at any time.Contribute a CURE to the Collection »


Results 1 - 10 of 59 matches

An Arabidopsis Mutant Screen CURE for a Cell and Molecular Biology Laboratory Course
Jinjie Liu, Michigan State University
This CURE is designed from a crucial component of a chloroplast lipid signaling research project and has been implemented for a cell and molecular biology laboratory course at Michigan State University. The research laboratory generated an engineered plant line producing a lipid-derived plant hormone and mutagenized this line. The research question is "what transporters or receptors are involved in the hormone signaling transduction or perception processes?". Students form research hypotheses based on the research model, design experiments, perform experiments, collect and analyze data, make scientific arguments, and share their findings with the learning community. Specifically, the students culture the mutagenized plant population and select the desired mutant phenotypes, followed by genotyping the mutants and characterizing the mutants by basic biochemical approaches. Mathematics is also integrated into the course design. As the students studied the relevant genetic, molecular and biochemical concepts during this CURE, they use the core idea of information flow and data they generate in the lab to make claims about their mutant plants and support these claims with evidence and reasoning.

Discipline: Life Sciences:Cell Biology, Molecular Biology
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Michigan
Target Audience: Introductory
CURE Duration: A full term
CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

Biochemistry II lab: Crithidia parasite metabolism
Amy Greene, Albright College
Course Undergraduate Research Experiences (CUREs) have been shown to increase student engagement, skills, and retention in STEM. We developed a CURE using non-pathogenic Crithidia fasciculata parasites, which are insect trypanosomes related to the causative agents of Leishmaniasis, African Trypanosomiasis, and Chagas' diseases. This parasite is ideal for undergraduate CUREs because it grows to high density in serum-free inexpensive media, and has not been well studied in the literature, providing opportunities for novel discoveries. Metabolically labelled 1-13C-glucose was added to the parasites, and changes in peak position was monitored over time (either in real time, or in the supernatant). The main fermentation products observed were ethanol and succinate. Student groups then designed a novel project investigating metabolism in Crithidia. Students produced novel data on metabolism in a little-studied parasite.

Discipline: Chemistry:Biochemistry, Chemistry, Health Sciences, Life Sciences:Cell Biology, Microbiology, Molecular Biology, Life Sciences
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Pennsylvania
Target Audience: Major, Upper Division
CURE Duration: Half a term, Multiple terms
CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

Characterizing the Aging Process Using Caenorhabditis elegans and Reverse Genetics
Joslyn Mills, Bridgewater State University
Using gene silencing (RNAi) in the nemotode C. elegans, students will identify genetic modifiers of proteins with roles in aging by reverse genetics. Specifically, students will analyze the effect of knocking down genes on the level of aging-related proteins tagged with fluorophores (GFP, RFP, etc.). Each group of students will use function-specific RNAi libraries (transcription factors, kinases, etc) already established in our lab. Furthermore, students will evaluate the effect of genetic modifiers on proteostasis and lifespan. In addition to becoming familiar with C. elegans work and appreciating the use of model organisms, the students will master microscopy, genetic crosses, gene silencing, and molecular and biochemical readout assays such as qPCR and immunoblotting.

Discipline: Life Sciences:Cell Biology, Genetics, Molecular Biology
Core Competencies: Asking questions (for science) and defining problems (for engineering), Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Rhode Island
Target Audience: Major, Introductory, Upper Division
CURE Duration: A full term
CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

Population & Community Ecology
Cascade Sorte, University of California-Irvine
Students in a Population and Community Ecology class participate in coastal marine research focused on understanding factors determining population sizes and community interactions, particularly in the context of species that appear to be shifting their ranges with climate change. Students participate in all aspects of the research from making observations and collecting data in the field to defining questions, stating hypothesis, designing and completing statistical analysis, and interpreting and presenting results. The outcomes are a research proposal, research paper, and poster presentation. All are intended to be at a level appropriate for use as a writing sample or presentation at undergraduate conferences. Results are incorporated into the ongoing research project led by the course instructor and graduate student teaching assistant.

Discipline: Environmental Science:Ecosystems, Global Change and Climate, Oceans and Coastal Resources, Environmental Science, Life Sciences:Ecology, Life Sciences
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
Nature of Research: Applied Research, Basic Research, Field Research
State: California
Target Audience: Major, Non-major, Upper Division
CURE Duration: A full term
On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Molecular Parasitology
Swati Agrawal, University of Mary Washington
In Spring 2021, we piloted a mini-CURE where student groups from University of Mary Washington and Georgia State University collaboratively completed research projects as part of a research-intensive course on Molecular Parasitology. The benefits of this approach were immediately obvious as students interacted across institutions, learned from each other's disciplinary expertise while informing their own research with data collected by their collaborators.

Discipline: Life Sciences:Cell Biology, Molecular Biology
Core Competencies: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Applied Research, Basic Research, Wet Lab/Bench Research
State: Virginia
Target Audience: Major, Upper Division
CURE Duration: A full term
CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

The HICA project
In this CURE, inspired by the work of Hoffmann, et al., students prepare mutant Haemophilus influenzae carbonic anhydrase (HICA) proteins. Using PyMOL to visualize the three-dimensional structure of the HICA protein, students choose one or more surface amino acid residues to mutate to histidine residues in order to create a surface histidine cluster that will allow the mutant protein to bind to a nickel affinity column. Using site-directed mutagenesis, recombinant plasmids are constructed and are then used to transform an E. coli expression vector. The mutant HICA protein is overexpressed, cells are lysed, and students load the cell lysate onto Ni-NTA columns and determine the imidazole concentration required to elute the mutant protein. The construction of a library of mutant proteins will allow the development of a general method in which specific surface histidine residues of any protein can be mutated in order to facilitate affinity purification. The Haemophilus influenzae bacterium described herein is a respiratory pathogen that causes meningitis (in its encapsulated form) and mucosal infections such as otitis media, sinusitis and conjunctivitis (in its unencapsulated form). A recent study showed that the carbonic anhydrase enzyme is absolutely required for pathogenesis. Furthermore, expression of the HICA enzyme allows the pathogen to survive in host immune cells (Langereis, et al.). These observations make the study of HICA itself particularly attractive, in addition to the overall goal of contributing to a body of work that will allow the minimal histidine character required for nickel affinity to be ascertained.

Discipline: Chemistry:Biochemistry
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: Rhode Island
Target Audience: Major, Upper Division
CURE Duration: A full term
CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

Isolation and characterization of antibiotic-producing soil bacteria
Maria Messner, Lenoir Community College
One of the biggest threat in hospitals is the rising cases of people who harbor antibiotic-resistant bacterial strains. Therefore, it is critical to find and characterize novel antibiotics to combat the resistant strains. Most of the antibiotics used in healthcare settings come from anti-biotic producing bacteria and fungi found in the soil. The goal of this CURE will be to isolate antibiotic-producing bacteria and fungi from the soil in the local area, and to determine the chemistry of the antibiotics. An extension of the project will be to determine how the presence of antibiotic-producing microbes affect other organisms resident in the soil, as it is unclear as to why microbes use energy to produce antibiotic factors.

Discipline: Life Sciences:Microbiology

Design2Data
Ashley Vater, University of California-Davis
The D2D program is centered around an undergraduate-friendly protocol workflow that follows the design-build-test-learn engineering framework. This protocol has served as the scaffold for a successful undergraduate training program and has been further developed into courses that range from a 10-week freshman seminar to a year-long, upper-division molecular biology course. The overarching research goal of this CURE probes the current predictive limitations of protein-modeling software by functionally characterizing single amino acid mutants in a robust model system. The most interesting outcomes of this project are dependent on large datasets, and, as such, the project is optimal for multi-institutional collaborations.

Discipline: Chemistry:Biochemistry, Chemistry, Life Sciences:Molecular Biology
Core Competencies: Asking questions (for science) and defining problems (for engineering), Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Applied Research, Basic Research, Wet Lab/Bench Research
Target Audience: Major, Non-major, Introductory, Upper Division
CURE Duration: A full term, Multiple terms

Neurogenetics Laboratory: Mapping a functional circuit for cold nociception in Drosophila
Sarah Clark, Georgia State University
Students will work in small groups to identify neural populations that may be involved in the Drosophila larval response to noxious cold. They will use the GAL4/UAS expression system to excite or inhibit neural populations and assess the impact of their manipulation on the larvae's behavioral response to cold. If a relevant neural population is identified, students will then identify (based on current literature) genes that are likely to be involved in neurite development and/or maintenance in that population. They will use mutations and/or RNA interference to disrupt the function of these genes in the population of interest and assess the effect of the disruption on neuronal morphology and larval behavior.

Discipline: Life Sciences:Cell Biology, Genetics, Molecular Biology
Core Competencies: Planning and carrying out investigations, Analyzing and interpreting data
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Georgia
Target Audience: Major, Upper Division
CURE Duration: A full term
CUREnet Exemplary Collection This CURE has been identified as exemplary based on CUREnet's review criteria.
See the activity page for details.

Using NSF's NEON Data in an Undergraduate Ecology CURE on the Ecological Impacts of Global Climate Change
Jennifer Kovacs, Agnes Scott College
We live in a time where we can see a very real need for a basic understanding of ecological terminology, concepts, and methodologies to improve public policy and other ecological problem-solving decisions, especially in light of global climate change. Across the field, there is a major push to incorporate computational thinking and an understanding of human social systems throughout the science curriculum. In ecology and other STEMM fields, basic programming and coding skills have become essential and marketable, as has the ability to mine and analyze large data sets.In this semester-long CURE, students individually develop and answer their own ecological research question using a selection of publicly available datasets from the expansive NSF NEON data repository. Generally, at the beginning of the course the instructor selects several data products from a specific geographic region. After gaining familiarity with the NEON project through videos, a NEON data tutorial, and a case study, students also use these curated NEON data products to begin forming their independent research projects. Most students ultimately incorporate other data products either from NEON or other databases into their final research projects. Students use mostly R to download, wrangle, and analyze their data. The instructor assumes no prior knowledge of R or coding at the beginning of the course. Throughout the semester, students complete mini-assignments and tutorials which introduce them to the necessary coding skills to download, clean, analyze, and visualize their chosen data products. Additionally, students are provided with a wide range of free resources, including videos, tutorials, and the free online textbook Passion Driven Statistics to help them master the skills they need to complete their individual research projects. During weekly in-class one-on-one meetings with the instructor, students work to identify, collect, and analyze data that would address an existing hypothesis/ problem in the field of ecology and global climate change. Ultimately, students present their findings to the larger campus community during the annual undergraduate research day at our institution.

Discipline: Environmental Science:Global Change and Climate, Environmental Science, Life Sciences:Ecology, Life Sciences
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data, Using mathematics and computational thinking
Nature of Research: Basic Research
State: Georgia
Target Audience: Upper Division
CURE Duration: A full term