The Teaching Quantitative Skills in the Geosciences website has not been significantly updated since 2011. We are preserving the web pages here because they still contain useful ideas and content. But be aware that the site may have out of date information.
You can find more recent and extensive resources on the Teach the Earth website.

Activities

Materials for Lab and Class



Results 1 - 10 of 330 matches

Climate Change Module part of Project EDDIE:Teaching Materials:Modules
This module was initially developed by O'Reilly, C.M., D.C. Richardson, and R.D. Gougis. 15 March 2017. Project EDDIE: Climate Change. Project EDDIE Module 8, Version 1.
Scientists agree that the climate is changing and that human activities are a primary cause for this change through increased emissions of CO2 and other greenhouse gases to the atmosphere. There have been times in ...

Teleconnections part of Project EDDIE:Teaching Materials:Modules
Kaitlin Farrell, University of Georgia; Cayelan Carey, Virginia Polytechnic Institute and State Univ
Ecosystems can be influenced by teleconnections, in which meteorological, societal, and/or ecological phenomenon link remote regions via cause and effect relationships. Because it is difficult to predict how ...

Plate Tectonics: GPS Data, Boundary Zones, and Earthquake Hazards part of Project EDDIE:Teaching Materials:Modules
Christopher Berg, Orange Coast College; Beth Pratt-Sitaula, EarthScope; Julie Elliott, Michigan State University
Students work with high precision GPS data to explore how motion near a plate boundary is distributed over a larger region than the boundary line on the map. This allows them to investigate how earthquake hazard ...

Detecting Cascadia's changing shape with GPS | Lessons on Plate Tectonics part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia — the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.

Lake Modeling Module part of Project EDDIE:Teaching Materials:Modules
This page was initially developed by Carey, C.C., S. Aditya, K. Subratie, and R. Figueiredo. 1 May 2016. Project EDDIE: Modeling Climate Change Effects on Lakes Using Distributed Computing. Project EDDIE Module 4, Version 1. Module development was supported by NSF DEB 1245707 and ACI 1234983. Note: An updated version of this module is available as part of the Macrosystems EDDIE project. Please visit the Climate Change Effects on Lake Temperatures module to view and download module files. We recommend using the updated Macrosystems EDDIE version of the module, as the Lake Modeling module materials have not been maintained with R code and software updates.
Lakes around the globe are experiencing the effects of climate change. In this module, students will learn how to use a lake model to explore the effects of altered weather on lakes, and then develop their own ...

Remote Sensing of Plants and Topography in R part of Project EDDIE:Teaching Materials:Modules
Kyla Dahlin, Michigan State University
This module introduces students who are already familiar with remote sensing and R to doing quantitative analyses with large spatial data sets. Students will explore different possible abiotic drivers of plant ...

Paleoclimate and Ocean Biogeochemistry part of Project EDDIE:Teaching Materials:Modules
Allison Jacobel, Middlebury College
This module guides students through an examination of how surface ocean productivity relates to global climate on glacial-interglacial timescales and how the availability of ocean nutrients can be correlated with ...

Measuring Ground Motion with GPS: How GPS Works part of Geodesy:Activities
Shelley E Olds, EarthScope Consortium
With printouts of typical GPS velocity vectors found near different tectonic boundaries and models of a GPS station, demonstrate how GPS work to measure ground motion.GPS velocity vectors point in the direction that a GPS station moves as the ground it is anchored to moves. The length of a velocity vector corresponds to the rate of motion. GPS velocity vectors thus provide useful information for how Earth's crust deforms in different tectonic settings.

Nutrient Loading Module part of Project EDDIE:Teaching Materials:Modules
This module was initially developed by Castendyk, D.N., T. Meixner, and C.A. Gibson. 6 June 2015. Project EDDIE: Nutrient Loading. Project EDDIE Module 7, Version 1. Module development was supported by NSF DEB 1245707.
Estimating nutrient loads is a critical concept for students studying water quality in a variety of environmental settings. Many STEM/Environmental science students will be asked to assess the impacts of a proposed anthropogenic activities on human water resources and/or ecosystems as part of their future careers. This module engages students in exploring factors contributing to the actual loads of nitrogen that are transmitted down streams. Nitrogen is a key water quality contaminant contributing to surface water quality issues in fresh, salt, and estuarine environments. Students will utilize real-time nitrate data from the US Geological Survey to calculate nitrate loads for several locations and investigate the interplay of concentration and discharge that contributes to calculated loads.

Lake Mixing Module part of Project EDDIE:Teaching Materials:Modules
This module was initially developed by Carey, C.C., J.L. Klug, and R.L. Fuller. 1 August 2015. Project EDDIE: Dynamics of Lake Mixing. Project EDDIE Module 3, Version 1. cemast.illinoisstate.edu/data-for-students/modules/lake-mixing.shtml. Module development was supported by NSF DEB 1245707.
Stratified lakes exhibit vertical gradients in organisms, nutrients, and oxygen, which have important implications for ecosystem structure and functioning. Mixing disrupts these gradients by redistributing these ...