Teaching Notes
Example Output
Here is one example of a map that can be produced after completing the chapter's step-by-step instructions. The map shows the years and locations of earthquakes with a magnitude of 7.0 or greater. Earthquakes in red have taken place in the last 100 years.
Grade Level
Note: This chapter was retired in July 2011. A similar EET chapter that uses the same data and ArcExplorer Java Edition (AEJEE) GIS software is available. See:
Investigating Earthquakes with ArcExplorer GIS
This chapter is most appropriate for students in grades 8-10. Students in grades 7 through 14 could use the chapter to learn to basic GIS techniques, such as conducting thematic and spatial queries.
Learning Goals
After completing this chapter, students will be able to:
- format data in preparation for GIS analyses
- map and analyze geospatial information
- interpret the results of GIS analyses to make predictions about where earthquakes will occur
*Note: It is not necessary for students to download the earthquake data themselves in order to carry out analyses about earthquake prediction. Some other options include the following:
- The data can be downloaded from the USGS and formated as a .txt file ahead of time, so that students can just import the data into a GIS, querying it to look for geographic patterns.
- The data can be downloaded ahead of time, but students can be given the opportunity to format it before importing it into a GIS for analysis.
Background Information
This chapter requires the use of GIS software that must be downloaded and installed. ArcVoyager SE GIS, based on ArcView GIS from ESRI, is a freely available GIS that can be used by educators at no cost . It was specifically developed for K-12 settings. However, one of its key limiltations is that it does not allow for project files to be saved. It is possible to capture and display screen shots of analyses made in ArcVoyager SE GIS. Please see the About the Tool and Data section for more information about this tool. Many schools already have site licenses for ArcView GIS software. Check with your instructional technology support team to find out if your school does or to obtain help with installing ArcVoyager SE GIS onto school computers.
Currently, it is not possible to accurately predict earthquakes in a timely fashion. It is a goal of this chapter that students discover this, as well as understand that earthquake risk varies across the Earth. Because earthquake activity is associated with plate boundaries, some places on Earth have a greater likelihood of experiencing earthquakes than do other locales. Four major concepts of this chapter are:
- The risk of earthquakes striking any location varies on Earth. Proximity to plate boundaries is a major factor in determining risk.
- The largest earthquakes happen at convergent plate boundaries.
- Earth scientists study historical earthquake distributions and frequencies to come up with long-range forecasts that indicate the likelihood of earthquakes striking certain regions.
- Although, accurate prediction of earthquakes is not yet possible, research continues in this area.
Instructional Strategies
Examples of datasets that can be investigated with the techniques of this chapter include: earthquake activity, stream flow conditions, global land and sea surface temperatures, and many other datasets with latitude and longitude coordinates, such as those gathered with a GPS.
Learning Contexts
Many datasets of interest to Earth scientists are posted on the Internet in tabular format with varying delimiters used to separate the fields. If a dataset contains latitude and longitude fields, then it can be mapped and analyzed with a GIS. Prior to bringing the data into a GIS, it may need to be prepared in a "GIS-ready" format. This means creating either a tab-delimited or comma-delimited file from the original dataset. This chapter describes the technique of preparing "GIS-ready" data as well as shows how to map and conduct basic analyses using a GIS.
Science Standards
The following National Science Education Standards are supported by this chapter:
Grades 5-8
- Use appropriate tools and techniques to gather, analyze, and interpret data.
The use of tools and techniques, including mathematics, will be guided by the question asked and the investigations students design. The use of computers for the collection, summary, and display of evidence is part of this standard. Students should be able to access, gather, store, retrieve, and organize data, using hardware and software designed for these purposes.
- Develop descriptions, explanations, predictions, and models using evidence.
Students should base their explanation on what they observed, and as they develop cognitive skills, they should be able to differentiate explanation from description - providing causes for effects and establishing relationships based on evidence and logical argument. This standards requires a subject knowledge base so the students can effectively conduct investigations, because developing explanations establishes connections between the content of science and the contexts within which students develop new knowledge.
- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle.
Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.
- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past.
Earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.
Grades 9-12
- Use technology and mathematics to improve investigations and communications.
A variety of technologies, such as hand tools, measuring instruments, and calculators, should be an integral component of scientific investigations. The use of computers for the collection, analysis, and display of data is also a part of this standard. Mathematics plays an essential role in all aspects of an inquiry. For example, measurement is used for posing questions, formulas are used for developing explanations, and charts and graphs are used for communicating results.
- Formulate and revise scientific explanations and models using logic and evidence.
Student inquiries should culminate in formulating an explanation or model. Models should be physical, conceptual, and mathematical. In the process of answering the questions, the students should engage in discussions and arguments that result in the revision of their explanations. These discussions should be based on scientific knowledge, the use of logic, and evidence from their investigation.
- Natural and human induced hazards present the need for humans to assess potential danger and risk.
Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and tradeoffs of various hazards - ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.
Geography Standards
The following U.S. National Geography Standards are supported by this chapter:
- How to use maps and other geographic representations, tools, and technologies to acquire, process, and report information from a spatial perspective
- How to analyze the spatial organization of people, places, and environments on earth's surface
- How to apply geography to interpret the past.
- How to apply geography to interpret the present and plan for the future.
Time Required
Three 45 minute sessions: The number of classroom sessions needed for this chapter is flexible, and depends on how much preparation is done ahead of time and on how much of the process students take on.
- Downloading and formatting the data takes approximately 45 minutes.
- Importing the data and analyzing it with a GIS takes approximately 45 minutes.
- Interpreting results and preparing a report or presentation takes approximately 45 minutes.
Assessment Strategy
This chapter culminates with students producing a report and/or preparing a presentation explaining their Top Ten list and the place on Earth that they predict the next big earthquake will strike. Consider evaluating their products using a rubric with separate scales for 1) accuracy of science content, 2) appropriateness of supporting maps and frequency analyses, 3) clarity of ideas, and 4) persuasiveness of the location of the Next Big One.