The Neoproterozoic Dalradian Supergroup contains widespread diagenetic sulphides present as pyrite. The sulphides occur in both carbonaceous shales and glacial diamictites, that were deposited in relatively reducing and oxidising conditions respectively. The trace element compositions of the pyrite, and consequently the whole rock compositions, contrast between the two lithologies. The highest concentrations of selenium, tellurium and gold are all found in diamictite-hosted pyrite. The data suggest that increased mobility of these elements in oxidising conditions led to greater uptake when pyrite was precipitated. As one model for the formation of orogenic gold ore deposits assumes a sulphide-rich protolith, pyrite ultimately formed during relatively oxidising conditions could make a contribution, including the widespread pyrite precipitated during the Neoproterozoic ‘Snowball Earth’ glaciations.