Starting Point-Teaching Entry Level Geoscience > Mathematics and Statistics Models > A Simple Mathematical Model
Explore Teaching Examples | Provide Feedback

A Simple Mathematical Model

Here we use a simple example from introductory chemistry or physics as it should be familiar to many science educators. Assume that a gas is heated in a sealed flexible container so the pressure remains constant (P=Po) and you want to develop a mathematical model describing how the volume of the container changes with time.

First, Assumptions are an essential part of all model development

The controlling differential equation of this system is:

Power = rate that Heat Energy is added = nCp(dT/dt)

or (dT/dt)=Power/(nCp)

This has the solution T = 300K + Power *time/(nCp)

using the equation of state, n=PoVo/(RTo), and Cp=7/2R gives,

T = To[1 + 2Power*time/(7PoVo)].

Finally using the equation of state again V=nRT/Po

V=Vo[1 +2Power*time/(7PoVo)]

Units are also very important in mathematical models. In this example Power should be in Watts, time in seconds, Pressure in Pascals(Pa), temperature Kelvin, and Volume in cubic meters. Although in the final result the first Vo can be in liters while the Vo inside the square brackets must be 0.001 m3.

« Previous Page      Next Page »