Teaching Notes
Example output
Screenshot of Yakutsk borehole temperature graph for January, in Microsoft Excel, overlaid on Google Earth map of borehole locations. Click the image for a larger view.
Grade Level
This activity is designed to enable users to access datasets from the National Snow and Ice Data Center (NSIDC), National Oceanic and Atmospheric Administration (NOAA), and National Center for Atmospheric Research (NCAR). Using Microsoft Excel, users will examine possible relationships between changes in surface air temperature and changes in permafrost temperature and coverage. It can be used with students in grades 7-14.
Learning Goals
After completing this chapter, students will be able to:
- Describe long-term changes in permafrost temperatures;
- Describe long-term changes in surface air temperatures;
- Visually display relationships between permafrost temperatures and surface air temperatures;
- Overlay two sets of data to demonstrate relationships and trends;
- Use technology in the classroom to analyze authentic scientific data sets;
- Plot tabular data as graphs and examine trends to make predictions; and
- Discover that analysis must be conducted within limitations of the data.
Rationale
Although students will be conducting their analyses on a remote area of Siberia, the skills and knowledge gained by completing this chapter will enable them to apply their learning to other similar areas of the world. Additionally, student should also be able to project how permafrost conditions in Siberia might continue to deteriorate if current trends continue.
Background Information
To begin this chapter, students need baseline knowledge of permafrost and its characteristics. "Permafrost" is technically defined as perennially frozen ground, soil, or sediment; the area must remain at or below 0° C for at least two consecutive years to be categorized as permafrost. It is not necessarily comprised of ice, though it can be; surfaces underlain by permafrost can also be covered with snow or remain entirely bare. The moisture content of permafrost is highly variable and one of the difficulties that scientists face when determining the extent and/or decrease in permafrost coverage. These areas can be on land as well as under oceanic continental shelves. Permafrost layers can range dramatically in thickness from one meter to more than 1000 meters.
Vladimir Romanovsky, a leading scientist in the field, gives a general overview of the effects of the changing permafrost landscape in this interview: Vladimir Romanovsky on the Current State of Permafrost. His interview and companion image gallery give detailed information on the issues concerning permafrost thaw. You can also search the site for additional and recent information about change in the polar regions.
Many other resources, such as the ones listed below, are available for more detailed information.
Additional Resources
- Cyrosphere ConnectionA fabulous resource from the University of Alaska Fairbanks. Includes interactive multimedia, slide shows, and background explanations about permafrost and boreholes.
- NSIDCNational Snow and Ice Data Center; an excellent source for maps and data; includes "View NSIDC Data on Virtual Globes: Google Earth."
- All About Frozen Ground
- University of Alaska; Permafrost Laboratory(Dr. Romanowski's lab); good source of news, publications, and additional data.
- International Permafrost Association
- U.S. Permafrost Association
- Arctic Report Card - Permafrost
- Policy Implications of Warming PermafrostUnited Nations Environmental Program (UNEP) Report, November 2012
- Policy Implications of Warming Permafrost (Acrobat (PDF) 1.4MB Dec17 12), Full UNEP Report, November 2012 in PDF
- Weather Underground background Article on Permafrostan excellent primer, includes good diagrams and graphics.
Key Terms and Prerequisite Knowledge
The following terms and definitions, as well as many others related to the cryosphere, can be found in the National Snow and Ice Data Center's NSIDC Glossary
Anomaly
Deviation of a meteorological quantity value in a given region from the normal (mean) value.
Carbon sink
An environmental reservoir that absorbs and stores more carbon than it releases.
Permafrost
Layer of soil or rock, at some depth beneath the surface, in which the temperature has been continuously below 0°C for at least two consecutive years; it exists where summer thawing fails to reach the base of the layer of frozen ground.
Surface Air Temperature
The ambient temperature indicated by a thermometer exposed to the air but sheltered from direct solar radiation, or placed in an instrument shelter 1.5 - 2.0 meters (5.0 - 6.6 feet) above ground; also called air temperature.
Talik
A layer or body of unfrozen ground occurring in a permafrost area due to a local anomaly in thermal, hydrological, hydro-geological, or hydro-chemical conditions. The layer remains unfrozen year-round.
Instructional Strategies
The lesson begins with the fictional Case Study that highlights the Siberian village of Chersky, Russia. Changes there in the underlying permafrost impact the daily lives of village inhabitants. In Part 1, users are challenged to learn enough about the characteristics of permafrost to understand the implications of these changes and to use analysis tools to investigate potential causes of the changes.
Ideally, each student or pair of students will work at their own computer for this lesson. Alternatively, with the use of a projector, some parts of the lesson can be conducted as whole class discussions.
Learning Contexts
Although this lesson focuses on identifying causes of thawing permafrost in Siberia, the implications of these changes in the Arctic region are far-reaching and impact Earth's geosphere, cryosphere, biosphere and atmosphere.
Science Standards
The following National Science Education Standards are supported by this chapter:
Grades 5-8
Science as Inquiry
- 8ASI1.3 Use appropriate tools and techniques to gather, analyze, and interpret data.
- 8ASI1.4 Develop descriptions, explanations, predictions, and models using evidence.
Science in Personal and Social Perspectives
- 8FSPSP3.2 Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.
Grades 9-12
Science as Inquiry
- 12ASI1.3 Use technology and mathematics to improve investigations and communications.
- 12ASI1.4 Formulate and revise scientific explanations and models using logic and evidence.
Science in Personal and Social Perspectives
- 12FSPSP5.2 Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.
Geography Standards
The following U.S. National Geography Standards are supported by this chapter:
Grades 9-12
Geography Standard 14: How human actions modify the physical environment.
Time Required
Depending on the skill level of the students, three to five class periods are needed to complete this chapter. In order to save time, instructors may decide to download the Google Earth and Excel files before class begins. Depending on network speed and reliability, instructors may also want to distribute the lesson files via thumbdrive or CD-ROM.
Case Study and Background: 1 class period
Part 2: Download and Install Google Earth, 1 class period
Part 3: Locate Chersky and explore permafrost locations, 1 class period
Part 4: Graph and analyze temperature trends, 1-2 class periods
Part 5: Compare Borehole trends with GISS temperature trends, 1 class period
Teaching Resources
Google Earth File (used in Parts 2,3, and 5)
- Permafrost_EET.kmz (KMZ File 3kB Feb24 11)
Excel Files (used in Part 4)
- Click on the following link to download the files from the NSIDC ftp site.
Excel Files of Subset data for all 5 locations opens in a new window. Once in the download window, click on the files that you would like to download. - If you are not able to access the files from the link above, you can download them from the links below. To download the file, right-click and choose "Save File As..." to save the files to your Desktop or Documents folder.
- HPIP Yakutsk Borehole Data (Excel 28kB Feb18 11)
- HPIP Churapcha Borehole Data (Excel 47kB Oct22 15)
- HPIP Verkhoyansk Borehole Data (Excel 37kB Feb18 11)
- HPIP Povrovsk Borehole Data (Excel 25kB Feb18 11)
- HPIP Isit Borehole Data (Excel 24kB Feb18 11)
Other Resources
Hands-on activities to compliment this lesson are available at NSIDC Educational Resources.