Quantitative Skills > Teaching Resources > Activities > Atmospheric vertical structure and the First Law of Thermodynamics

Atmospheric Vertical Structure and the First Law of Thermodynamics

Tony Hansen, St. Cloud State University
Author Profile

This activity has benefited from input from a review and suggestion process as a part of an activity development workshop.

This activity has benefited from input from faculty educators beyond the author through a review and suggestion process as a part of an activity development workshop. Workshop participants were asked to peruse activities submitted by others in their disciplinary group prior to the workshop. The groups then convened early in the workshop to discuss the materials and make suggestions for improvements. To learn more about this review process, see http://serc.carleton.edu/quantskills/review_processes.html#2004.


This page first made public: Oct 23, 2009

Summary

Diagram from Answer key - TH Atmosphere Vert. Structure This sequential set of in-class and homework problems concerns applications of the First Law of Thermodynamics. In the homework, students are first asked to compute and plot potential temperatures of specified adiabats. In a second assignment, the potential temperature from an observed sounding is computed and plotted to develop a framework for beginning to understand the stratification of the atmosphere. These activities are intended to help students discover the importance and utility of conservation principles derived from the First Law of Thermodynamics. In addition, they provide a first step in evolving from the p-V diagrams the students have seen in their physics coursework toward the thermodynamic diagrams used in meteorology.

Learning Goals

Context for Use

These assignments are intended to be used in the first part of a sophomore/junior level Atmospheric Thermodynamics course. Students will have learned the equation of state and been introduced to the First Law before these problems are assigned. They must have completed a year of calculus and the first semester (preferably both semesters) of calculus-based physics, as well as a 200 level introductory meteorology course.

Description and Teaching Materials

In-class Preliminary Activities (Microsoft Word 31kB Jul17 04)
Homework Assignments (Microsoft Word 66kB Jul17 04)
Homework Solutions (Microsoft Word 186kB Jul16 04)
Instructors Notes (Microsoft Word 26kB Jul16 04)

Teaching Notes and Tips

Assessment

See more Activities »


« What is the fate of CO2 produced by fossil fuel combustion?       Viscosity of the Mantle: Constraints from Post-glacial Rebound »