CURE Collection
Browse through the collection of CUREs that have been submitted by community members. You can use the faceted search at the right to narrow the view of the collection. You can also use the free text search at any time.Contribute a CURE to the Collection »
Discipline
Core Competencies
- Asking questions (for science) and defining problems (for engineering) 37 matches
- Developing and using models 15 matches
- Planning and carrying out investigations 39 matches
- Analyzing and interpreting data 44 matches
- Using mathematics and computational thinking 20 matches
- Constructing explanations (for science) and designing solutions (for engineering) 26 matches
Nature of Research
State
- Alabama 3 matches
- California 3 matches
- Colorado 3 matches
- Georgia 3 matches
- Illinois 1 match
- Maryland 6 matches
- Massachusetts 2 matches
- Michigan 2 matches
- Missouri 1 match
- New Hampshire 1 match
- New York 2 matches
- North Carolina 2 matches
- Oklahoma 1 match
- Oregon 1 match
- Pennsylvania 2 matches
- Rhode Island 3 matches
- Texas 2 matches
- Virginia 3 matches
- Washington 1 match
Target Audience
Results 1 - 10 of 59 matches
Exploring the Structure-Function Relationship in RNA Biochemistry
Core Competencies: Asking questions (for science) and defining problems (for engineering), Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research
State: Colorado
Target Audience: Major, Upper Division
CURE Duration: Half a term
See the activity page for details.
U-CARE: Undergraduate Coral Aquarium Research Experience
Matthew Partin, Bowling Green State University-Main Campus
After completing their gateway biology courses (sophomore or junior year) marine biology students at BGSU enroll in a required Course-based Undergraduate Research Experience (CURE) called BIOL 3700: Introduction to Inland Marine Research. This course teaches advanced aquarium husbandry, along with aquarium sciences, and aquarium research methods. Other skills taught in the class include scientific design, data collection, and analysis. A large portion of the course is dedicated to conducting research with coral fragments housed in the BGSU Marine Lab. Students work in small groups to answer questions concerning the morphology and growth rates of a variety of coral species based on variables such as water flow (pattern or intensity), light (cycle, color, or intensity), or diet (food type, frequency, or amount). Results are uploaded to a public database to address the long-term goal of predictably inducing corals to spawn in aquaria. Data is shared publically with interested stakeholders.All students in the CURE course are assigned a peer research Learning Assistant (rLA) to serve as a mentor. rLAs are undergraduates who have previously performed well in the course and have advanced knowledge of the Marine Lab, coral husbandry, and the research process. Each rLA oversees 1 group of 5 students. Students meet with the rLAs and instructor weekly. The instructor meets with the rLAs for weekly husbandry and pedagogy training, as well as discussing progress and needs in the CURE research projects.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Applied Research, Basic Research
Target Audience: Major, Upper Division
CURE Duration: A full term
See the activity page for details.
An Arabidopsis Mutant Screen CURE for a Cell and Molecular Biology Laboratory Course
Jinjie Liu, Michigan State University
This CURE is designed from a crucial component of a chloroplast lipid signaling research project and has been implemented for a cell and molecular biology laboratory course at Michigan State University. The research laboratory generated an engineered plant line producing a lipid-derived plant hormone and mutagenized this line. The research question is "what transporters or receptors are involved in the hormone signaling transduction or perception processes?". Students form research hypotheses based on the research model, design experiments, perform experiments, collect and analyze data, make scientific arguments, and share their findings with the learning community. Specifically, the students culture the mutagenized plant population and select the desired mutant phenotypes, followed by genotyping the mutants and characterizing the mutants by basic biochemical approaches. Mathematics is also integrated into the course design. As the students studied the relevant genetic, molecular and biochemical concepts during this CURE, they use the core idea of information flow and data they generate in the lab to make claims about their mutant plants and support these claims with evidence and reasoning.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Michigan
Target Audience: Introductory
CURE Duration: A full term
See the activity page for details.
Characterizing the Aging Process Using Caenorhabditis elegans and Reverse Genetics
Joslyn Mills, Bridgewater State University
Using gene silencing (RNAi) in the nemotode C. elegans, students will identify genetic modifiers of proteins with roles in aging by reverse genetics. Specifically, students will analyze the effect of knocking down genes on the level of aging-related proteins tagged with fluorophores (GFP, RFP, etc.). Each group of students will use function-specific RNAi libraries (transcription factors, kinases, etc) already established in our lab. Furthermore, students will evaluate the effect of genetic modifiers on proteostasis and lifespan. In addition to becoming familiar with C. elegans work and appreciating the use of model organisms, the students will master microscopy, genetic crosses, gene silencing, and molecular and biochemical readout assays such as qPCR and immunoblotting.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Basic Research, Wet Lab/Bench Research
State: Rhode Island
Target Audience: Major, Introductory, Upper Division
CURE Duration: A full term
See the activity page for details.
Population & Community Ecology
Cascade Sorte, University of California-Irvine
Students in a Population and Community Ecology class participate in coastal marine research focused on understanding factors determining population sizes and community interactions, particularly in the context of species that appear to be shifting their ranges with climate change. Students participate in all aspects of the research from making observations and collecting data in the field to defining questions, stating hypothesis, designing and completing statistical analysis, and interpreting and presenting results. The outcomes are a research proposal, research paper, and poster presentation. All are intended to be at a level appropriate for use as a writing sample or presentation at undergraduate conferences. Results are incorporated into the ongoing research project led by the course instructor and graduate student teaching assistant.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Analyzing and interpreting data
Nature of Research: Applied Research, Basic Research, Field Research
State: California
Target Audience: Major, Non-major, Upper Division
CURE Duration: A full term
Learn more about this review process.
Molecular Parasitology
Swati Agrawal, University of Mary Washington
In Spring 2021, we piloted a mini-CURE where student groups from University of Mary Washington and Georgia State University collaboratively completed research projects as part of a research-intensive course on Molecular Parasitology. The benefits of this approach were immediately obvious as students interacted across institutions, learned from each other's disciplinary expertise while informing their own research with data collected by their collaborators.
Core Competencies: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Applied Research, Basic Research, Wet Lab/Bench Research
State: Virginia
Target Audience: Major, Upper Division
CURE Duration: A full term
See the activity page for details.
The Art of Microbiology: an Agar Art Microbiology Lab CURE
Jeffrey Morris, University of Alabama at Birmingham
Students use agar art made with freshly isolated microbes as a source for developing their own novel research projects.
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations (for science) and designing solutions (for engineering)
Nature of Research: Informatics/Computational Research, Wet Lab/Bench Research
State: Alabama
Target Audience: Major
CURE Duration: A full term
Isolation and characterization of antibiotic-producing soil bacteria
Maria Messner, Lenoir Community College
One of the biggest threat in hospitals is the rising cases of people who harbor antibiotic-resistant bacterial strains. Therefore, it is critical to find and characterize novel antibiotics to combat the resistant strains. Most of the antibiotics used in healthcare settings come from anti-biotic producing bacteria and fungi found in the soil. The goal of this CURE will be to isolate antibiotic-producing bacteria and fungi from the soil in the local area, and to determine the chemistry of the antibiotics. An extension of the project will be to determine how the presence of antibiotic-producing microbes affect other organisms resident in the soil, as it is unclear as to why microbes use energy to produce antibiotic factors.
From an Inquiry-Guided Project to a CURE in General Biology: Testing Repellent Effects of Essential Oils and a Parasitoid Wasp Against Callosobruchus maculatus.
Joseph Felts, Davidson-Davie Community College
Core Competencies: Asking questions (for science) and defining problems (for engineering), Planning and carrying out investigations, Analyzing and interpreting data
State: North Carolina
Target Audience: Introductory
CURE Duration: Half a term
BASIL (Biochemistry Authentic Scientific Inquiry Laboratory)
Arthur Sikora, Nova Southeastern University; Rebecca Roberts, Ursinus College
This curriculum from the BASIL (Biochemistry Authentic Scientific Inquiry Laboratory) biochemistry consortium aims to get students to transition from thinking like students to thinking like scientists. Students will analyze proteins with known structure but unknown function using computational analyses and wet-lab techniques. BASIL is designed for undergraduate biochemistry lab courses, but can be adapted to first year (or even high school) settings, as well as upper-level undergraduate or graduate coursework. It is targeted to students in biology, biochemistry, chemistry, or related majors. Further details about the BASIL biochemistry consortium can be found on the BASIL blog, http://basiliuse.blogspot.com/ The curriculum is flexible and can be adapted to match the available facilities, the strengths of the instructor and the learning goals of a course and institution. These lessons are often used as part of upper-level laboratory coursework with at least one semester of biochemistry as a pre-requisite or co-requisite. The lab has been designed for classes ranging from 10-24 students (working in teams of two or three) per lab section. This lesson can be adapted to laboratory courses for introductory biology, cell and molecular biology, or advanced biology labs.
Nature of Research: Basic Research, Informatics/Computational Research, Wet Lab/Bench Research
State: New York
Target Audience: Major, Upper Division
CURE Duration: A full term, Multiple terms