MnSTEP Teaching Activity Collection > MnSTEP Activities > Exploring molecular movement: does temperature matter?

Exploring molecular movement: does temperature matter?

Kim Toops
Prairie Woods Elementary
New London, MN 56273

Based on an original activity from "Simple Chemistry Experiments with Everyday Materials by Louis V. Loeschnig, Sterling Publishing Co., Inc. New York, c. 1995, p. 22.
Author Profile


In this interactive demonstration, students observe what happens to food coloring when dropped into beakers containing different temperatures of water.

Learning Goals

This activity is designed as a beginning exploration about kinetic molecular energy for any grade level, but specifically for third graders. This activity can be used for observation purposes on a O/K/W/H/L chart. Questions will also be formed after watching this demonstration.

Concepts: All molecules have energy and are constantly in motion. Heat is associated with the motion of molecules.

Vocabulary words: kinetic energy, beaker, molecules, motion

Context for Use

This activity could be used at any grade level for a single class. It is described here as a demonstration that can be done at the beginning of discussion about kinetic energy, but can also be completed by students as a lab activity. Time is needed to heat one container of water and cool another. A heat source is needed (or hot tap water) and ice (or cold tap water) in two identical clear containers. Thermometers are optional, but good to have. Food coloring is also necessary. This activity would be very easy to adapt for use in other settings and at other grade levels.

Subject: Chemistry:General Chemistry:Bonding & Molecules, Thermodynamics, Thermodynamics:Heat, ,
Resource Type: ActivitiesClassroom ActivityShort ActivityDemonstration, Activities:Lab Activity
Grade Level: Intermediate (3-5)

Description and Teaching Materials

Exploring Molecular Movement: Does Temperature Matter?

The teacher can begin with this: You cannot see molecules, but everything in the world is made up of them. A molecule is much smaller than a grain of salt or a drop of water. Do molecules move? If so, how fast and how slowly?

You need:
2 clear beakers/glasses/graduated cylinders
hot water
cold water
food coloring
thermometer (optional)

The teacher should have one container with cold water, and one with hot. You can record the temperature in each container if you like. Be sure that both containers contain the same amount of water.

Discuss with the students the temperature of each container of water. Ask the students what they think will happen to a drop of food coloring placed in each container, and why they think the way they do.

Quickly place one drop of food coloring in each container and observe what happens. Use the same color in each container.

The food coloring will spread throughout the water in both beakers but at different rates. Why does this happen? The cold water will eventually become completely colored because the water molecules are moving throughout the glass. When the water is warmer, the heat energy in it causes the water molecules to move much faster. This makes the food coloring spread out more rapidly. This is an example of kinetic molecular energy.

After the initial demonstration by the teacher, the students may ask some additional questions including:
1. How much of a difference does the temperature make?
2. Does the amount of water in the container make a difference?
3. Does the color of the food coloring make a difference?
4. Does the size or shape of the container make a difference?
5. Does the height of the drop make a difference?

After the students have had the opportunity to try some more experiments, they should come together as a group to discuss their findings.

This activity was adapted from Simple Chemistry Experiments with Everyday Materials by Louis V. Loeschig, Sterling Publishing Co., New York, 1995.

Teaching Notes and Tips

If you are unable to get really hot water out of your faucet at school, a heat source may be needed. You may want to place a large piece of white tagboard behind the beakers to enable the students to see what's happening.

We have done very little with forms of energy in the past, and this will be a start. With our current science curriculum, we have had difficulty meeting some of the standards dealing with asking questions about the natural world that can be answered scientifically and this activitiy will enable us to do so.


The students will achieve their learning goals if they realize that the food coloring moves more quickly through warm water than cold because the molecules are moving more quickly. The teacher will determine understanding through discussion with students as they are completing the lab activities after the initial demonstration.


3.I.A.1 The student will explore the use of science as a tool that can help investigate and answer questions about the environment.
3.I.B.1 The student will ask questions about the natural world that can be investigated scientifically.

References and Resources